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ABSTRACT

The aim of this article is twofold. First, to develop a clear quantum theoretical playground where questions about the connection between strain
fields and electric fields could be unambiguously explored. Second, as an application, to derive a criterion that establishes the length scale below
which bent molecules, in particular, carbon nanotubes, display flexoelectricty. To this end, we consider a model molecule that displays the basic
elements necessary to support flexoelectricity. Due to its simplicity, a full quantum mechanical solution is possible, providing analytical expres-
sions for the energy bands and for the electronic states and their corresponding strain gradient-induced charge density. This charge density is in
turn used to evaluate the appearance of electric fields. Finally, we investigate the consequences of applying our model to real organic ring
systems, in particular, answering the question of whether flexoelectricity found in the theory should be present in experiments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048724

I. INTRODUCTION

While flexoelectricity was first predicted theoretically by
Kogan over half a century ago,1 it has not been until the last few
years that a revived interest in the subject has arisen, due mainly to
the technological ability and to the desire to build sensors and actu-
ators at the sub-micrometer scale, where flexoelectricity is expected
to play a key role, but also for its intrinsic scientific value.
Moreover, 50 years elapsed since the description of the inverse
flexoelectric effect2 and that of connections of the converse effect
with piezoelectricity.3

Although the high activity on flexoelectricity has clearly estab-
lished its ubiquity at the sub-micrometer scale,4–10 and substantial
conceptual progress has been made, fundamental questions still
mar its interpretation, in particular, the comparison between
theory and experimental results. Indeed, flexoelectricity is inextrica-
bly convolved with piezoelectric and semiconducting properties.
For example, piezoelectric coefficients go hand-in-hand with per-
mittivity,11 and surface piezoelectric effects12 or asymmetric piezo-
electricity13 may not be distinguishable from flexoelectricity.

Here, we study theoretically, from a quantum mechanics per-
spective, the appearance of flexoelectricity on bent molecules. The
molecular system is chosen so that charge redistributions by
bending are purely flexoelectric. Also, the experimental measure-
ment of charge at the nanoscale is coming of age; assessing quanti-
tative charge values is now possible.14,15 Thus, this theoretical

model becomes ideal for a direct check of foundational
flexoelectricity.

While our goal here is to present a system that can be solved
completely analytically to gain insight into its physics, the formal-
ism is readily generalizable to more complex molecules in case, to
compare with specific experiments, more accurate answers were
required.

The paper is organized as follows. In Sec. II, we present the
Hamiltonian for the bent molecular chain and find the energy
bands and states. In Sec. III, we obtain the electron probability
density of the system by considering the filling of all states up to
the Fermi level. In Sec. IV, we use the probability density to
calculate the charge separation of the system and the
concomitant-induced electric quadrupole. We apply the results to
organic molecules that have been recently synthesized. In Sec. V,
conclusions, we put the main results of the paper in context,
mention ways in which the framework could be used to understand
other systems and suggest experiments that may measure this flexo-
electric charge separation.

II. ELECTRONIC STATES

Consider two identical parallel chains of M atoms each, adja-
cent atoms being separated a distance δ, with (M � 1)δ ¼ L, the
length of the system.
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Figure 1(a) shows a diagram of the unbent system, and, considering nearest neighbor interactions, the tight binding Hamiltonian16 is

Hstraight ¼
XM
mo¼1

αjmoi moh j þ
XM
mi¼1

αjmii mih j þ
XM�1

mi¼1

β jmi þ 1i mih j þ jmii mi þ 1h jð Þ

þ
XM�1

mo¼1

β jmo þ 1ihmoj þ jmoihmo þ 1jð Þ þ
XM
mo¼1

βjmii moh j δmimo , (1)

where α is the onsite parameter, β is the hopping parameter,17 and
δmimo is the Kronecker delta: δmimo ¼ 1 if mi ¼ mo and δmimo ¼ 0
if mi = mo. The state jmoi represents the atomic orbital at site mo

of the outer (orange) ring, and the state jmii represents the atomic
orbital at site mi of the inner (indigo) ring, with 1 � moi � M. A
simpler way to track the site location can be achieved by introduc-
ing the spinors

jmoi ¼ jmoi
0

� �
, (2a)

jmii ¼ 0
jmii

� �
, (2b)

so that, for example,
j5i
0

� �
represents the atomic orbital at site 5

of the orange ring.
Next, consider bending the straight molecule of Fig. 1(a) into

a circle [Fig. 1(b)] of radius R such that 2πR ¼ (M � 1)δ. On
bending, the outer (orange) atoms will be farther apart than δ, and

the inner (indigo) atoms will be closer than δ. Specifically, those
separations are δ 1+ δ

2R

� � ¼ δ 1+ π
M�1

� �
. This has the effect of

changing the hopping parameters of the tight binding
Hamiltonian. Indeed, since the hoping parameter diminishes expo-
nentially with atomic separation,18 we have

hoping parameter ¼ constant exp �κδ 1+
δ

2R

� �� �
¼ constant exp(�κδ)exp +

κδ2

2R

� �
: (3)

We notice that the combination constant exp(�κδ) is the
native β, as in the straight chain. Then, we have that

hoping parameter ¼ β exp(+Δ), (4)

with the definition of the dimensionless constant Δ ¼ κδ2

2R ¼ πκδ
M�1.

Thus, the Hamiltonian for the straight system [Eq. (1)] is
modified for the bent molecule as follows:

H ¼
XM
mo¼1

αjmoihmoj þ
XM
mi¼1

αjmiihmij þ
XM
mi¼1

βe�Δ jmi þ 1ihmij þ jmiihmi þ 1jð Þ

þ
XM
mo¼1

βeþΔ jmo þ 1ihmoj þ jmoihmo þ 1jð Þ þ
XM
mo¼1

βjmiihmoj δmimo , (5)

where the hopping parameter has been upgraded and all the sums
run to M, with the understanding that the index M þ 1 corre-
sponds to index 1, corresponding to the circular molecule. In addi-
tion, the hoping parameter in the last term is the same as in
Eq. (1), because the separation between nearest neighbors from the
two chains remains unchanged.

Using the notation from Eq. (2), we write the eigenvectors of
H [Eq. (5)] as

jwni ¼
XM
m¼1

Tomjmi
Timjmi

� �
, (6)

where Tom is the amplitude of the eigenstate n at the outer site
located at m and the same for index i.

Due to the C2π rotational symmetry, the coefficients are of the
form

Tom ¼ To e
imθ , (7a)

Tim ¼ Ti e
imθ , (7b)

where

θ ¼ 2 π n
M

, (8)

with n an integer between 0 and M � 1.
The coefficients To and Ti are obtained by considering

Schrödinger Equation Hjfni ¼ Ejfni with the Hamiltonian in
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Eq. (5) and using Eqs. (7) and (6). Upon performing those substi-
tutions,

α þ 2βe�Δ cos θ β
β α þ 2βeþΔ cos θ

� �
To

Ti

� �
¼ E

To

Ti

� �
: (9)

It is convenient to introduce the dimensionless energy ε ¼ E�α
β ,

with which Eq. (9) becomes

2e�Δ cos θ � ε 1
1 2eþΔ cos θ � ε

� �
To

Ti

� �
¼ 0: (10)

The two solutions for ε correspond to two energy bands

ε+¼2 cos θ coshΔ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos2 θ sinh2 Δ

p
, (11)

with θ given in Eq. (8). Figure 2 shows a typical energy band struc-
ture for the system.

From Eq. (11), for each of the M values of θ, there are two
energy states, so that the system has 2M states in total, and at low
temperatures, half of them are occupied with two electrons each,
up to the topmost energy, the Fermi energy. For large M, the Fermi
energy for this system is zero, but for M e,10, there are slight devia-
tions that affect the electric properties.

The coefficients To and Ti for each energy are readily com-
puted,

T+
o ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (ε+�2 cos θ e�Δ)2
q , (12a)

T+
i ¼ ε+�2 cos θ e�Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (ε+�2 cos θ e�Δ)2
q , (12b)

where we have chosen normalization jT+
o j2 þ jT+

i j2 ¼ 1.

Finally, the eigenstates (6) take the explicit form

jw+
θ i ¼ 1

M
T+
o

T+
i

� �XM
m¼1

eimθjmi: (13)

III. ELECTRON PROBABILITY DENSITY

From Eq. (13), the probability to find an electron in state θ in
the outer ring (regardless of location) is 1

M (jTþ
o j2 þ jT�

o j2). Then, the
probability of finding an electron in the outer ring (regardless of
state) should consider all states with energies below the Fermi energy,

Po ¼ 1
M

X
θþ

jTþ
o j2 þ

X
θ�

jT�
o j2

 !
, (14)

where θþ represents the states of the upper band (εþ) with energies
ε(θþ) � εF and θ� labels the states of the lower band (ε�) with
ε(θ�) � εF .

Similarly, the probability of finding an electron in the inner
ring (regardless of state) considers all states with energies below the
Fermi energy,

Pi ¼ 1
M

X
θþ

jTþ
i j2 þ

X
θ�

jT�
i j2

 !
¼ 1� Po: (15)

Equations (14) and (15) serve as the basis to understand the
charge unbalance upon bending. The probabilities, through the T
coefficients, depend on M and thus on the curvature.

The expression for Po in Eq. (14) can be made more explicit
by noticing that, from Eqs. (11) and (12),

jT+
o j2 ¼ 1

2
+

cos[θ]sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos[θ]2sinh[Δ]2

p : (16)

FIG. 1. A straight double chain of atoms (a) of length L and width δ is bent into
a circle (b) or radius R. Although all atoms are identical, here we explicitly differ-
entiate the outer (orange) from the inner (indigo).

FIG. 2. The two energy bands of Eq. (11) for Δ ¼ 1 and M ¼ 16. In this case,
we see visually that the top of the bottom 16 energy states (HOMO) is slightly
below the ε ¼ 0 line.
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Thus,

Po ¼ 1
M

X
θþ

1
2
� cos[θ] sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 cos[θ]2 sinh[Δ]2
p !

þ
X
θ�

1
2
þ cos[θ] sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 cos[θ]2 sinh[Δ]2
p !" #

: (17)

Since there are M occupied states below the Fermi level,
P
θþ

1þP
θ�

1 ¼ M; therefore,

Po ¼ 1þ 1
M

X
θ�

cos[θ�] sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos[θ�]2sinh[Δ]2

p !
�
X
θþ

cos[θþ] sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos[θþ]2 sinh[Δ]2

p !" #
: (18)

IV. CHARGE SEPARATION AND INDUCED QUADRUPOLE

Each site, m, of the outer ring contributes a fixed positive nuclear charge e and a negative electronic charge �e Po. Thus, each site of
the outer ring has a net charge qo ¼ (1� Po)e, and similarly, each site of the inner ring has a net charge qi ¼ �(1� Po)e. Using Eq. (18),

qo ¼ e
M

X
θþ

cos[θþ]sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos[θþ]2sinh[Δ]2

p !
�
X
θ�

cos[θ�]sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos[θ�]2sinh[Δ]2

p !" #
, (19a)

qi ¼ �qo: (19b)

This charge separation produces a quadrupole moment Q, and we proceed to calculate it. Starting from its definition,19

Q ¼
X

k¼atom position

qk(3~rk~rk � r2k I), (20)

where I is the two-dimensional identity matrix,~rk is the position of atom k, and~rk~rk is the dyadic
20 of~rk with itself.

Accounting explicitly for the M sites in each ring and writing the matrices of Eq. (20) explicitly,

Q ¼qo
XM
m¼1

3
x2om xomyom

xomyom y2om

� �
� x2om þ y2om 0

0 x2om þ y2om

� �� �
� qo

XM
m¼1

3
x2im ximyom

ximyim y2im

� �
� x2im þ y2im 0

0 x2im þ y2im

� �� �
, (21)

with

xom ¼ Rþ δ

2

� �
cos

2πm
M

� �
yom ¼ Rþ δ

2

� �
sin

2πm
M

� �
xim ¼ R� δ

2

� �
cos

2πm
M

� �
yim ¼ R� δ

2

� �
sin

2πm
M

� �

8>>>>>>>>>>>><>>>>>>>>>>>>:
: (22)

Then,

Q ¼ qo Rþ δ

2

� �2

� R� δ

2

� �2
" #XM

m¼1

3 cos2
2πm
M

� �
� 1 3 cos

2πm
M

� �
sin

2πm
M

� �
3 cos

2πm
M

� �
sin

2πm
M

� �
3 sin2

2πm
M

� �
� 1

0BB@
1CCA: (23)
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Using that

XM
m¼1

3 cos2
2πm
M

� �
� 1 3 cos

2πm
M

� �
sin

2πm
M

� �
3 cos

2πm
M

� �
sin

2πm
M

� �
3 sin2

2πm
M

� �
� 1

0BB@
1CCA ¼

M
2

0

0
M
2

0B@
1CA, (24)

we have

Q ¼ qoRδM I: (25)

Using Eq. (19) for qo, we finally obtain the expression for the quadrupole moment,

Q ¼ eRδM I
X
θþ

cos[θþ]sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos[θþ]2sinh[Δ]2

p !
�
X
θ�

cos[θ�]sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos[θ�]2sinh[Δ]2

p !" #
, (26)

which can be considered as the main theoretical result of the article. It connects the curvature of the ring with the quadrupole moment.
We first observe that in the continuum limit, when M ! 1, the sums become

X
θþ

cos[θþ]sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4 cos[θþ]2sinh[Δ]2

p !
�
X
θ�

cos[θ�]sinh[Δ]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4 cos[θ�]2sinh[Δ]2

p !" #
!M

2π

ð4π
3

2π
3

cos[θ]sinh[Δ]dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4 cos[θ]2sinh[Δ]2

p �
ð5π

3

π
3

cos[θ]sinh[Δ]dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4cos[θ]2sinh[Δ]2

p" #
,

(27)

where we have used dθ ! 2π
M . Since, in that limit, both integrals are

exactly the same, we obtain Q ¼ 0 as expected: no flexoelectric
effect for long molecules with small curvature.

Of course, the important question is what range of parameters
are physically relevant since that will give an idea of the threshold
molecular length below which flexoelectricty becomes relevant. To
gain insight into that question, we consider here the case of the
recently synthesized cyclo[n]carbons.21 Although our two-ring
structure is not the same as the synthesized cyclo[n]carbons, it can
give us an idea of order of magnitude. From Ref. 22 for Carbon,
δ ffi 1:5 A

�
and ffi2 A

� �1
, so we consider Eq. (26) with Δ ¼ πκδ

M�1ffi 3:0 π
M�1 and perform the sums numerically up to the Fermi energy.

Figure 3 shows, as a result of that computation, the dependence of
Q on the size of molecule M.

Figure 3 also shows that, for large values of M, we do recover
numerically that the quadrupole moment vanishes. But, more
interestingly, we see that for up to M � 20, the quadrupole
moment remains larger than 20% of the largest value for M ¼ 3.

An interesting value is M ¼ 9 since the cyclo18-carbon has
been synthesized.21 We see, from Fig. 3, that in this case, the quad-
rupole value is well above the values corresponding to large mole-
cules (for example, M ¼ 50) in Fig. 3.

While our theory focuses on ring molecules, it is worth high-
lighting the results by Kalinin and Meunier.6 They performed ab
initio first principles’ density functional theory computations
chemistry of carbon structures by NWCHEM.23 In particular, they
considered 20-carbon long polyacetylene chains for different radii
of curvature. Because in their study the chains were open, dipole
moments were induced. In contrast in our case, by the intrinsic

ring nature of the molecules, the dipole moment is zero, and the
two results cannot strictly be compared. However, given the simi-
larities of focus between the two approaches, namely, the use of
quantum mechanics to elucidate flexoelectricity, it is worth estimat-
ing what our theory would provide for open chains. To that end,
we first consider a ring 20-atoms long and compute its charge
transfer. We use that charge transfer figure to subsequently calcu-
late the dipole moment of 20-atom long open chains of varying
radii of curvature. The results are shown in Fig. 4 and are of the
same order of magnitude as those obtained by Kalinin and

FIG. 3. Induced quadrupole moment Q vs bending for κδ ffi 3. Q is given
relative to its larger value when M ¼ 3.
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Meunier. That the results are not the same is, of course, expected
since we are doing an estimate and because our double molecule is
not the same as polyacetylene. Yet, the closeness of the results is
indicative that molecular chains show relevant quantum flexoelec-
tric response in the nanometer range.

V. CONCLUSIONS

While it is known that flexoelectricity is a property of all
materials regardless of symmetry or chemical nature, and that its
effect increases as the sample size decreases, it is necessary to con-
tinue finding unambiguous connections between theory and experi-
ments to be able to assess real systems. This is the more important
as the community will grow in its applications of flexoelectricity in
nanodevices. It is still a very exciting work in progress.

This article contributes in that direction by establishing a
simple criterium to estimate the threshold radius of curvature of
bent linear molecules below which flexoelectricity becomes signifi-
cant. We have given an example of the application of the method
to the recently synthesized cyclo[n]carbon ring-shaped organic
molecules.

The quantum mechanics framework developed here is easily
generalizable to more complicated molecules and to two- and
three-dimensional materials. There is no conceptual difficulty, just
more time-consuming computations. Here, we restricted to a
simple system aiming at understanding the concept rather than
doing long computations.

We mentioned in the article already the timeliness of the
result, since the measurement of charge at the nanoscale is now
becoming quantitatively possible.15 We complement this comment
by the fact that the system presented here is particularly amenable
of being probed by atomic force microscopy.24,25
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