
RESEARCH ARTICLE MATHEMATICS

Growth and depletion in linear stochastic reaction networks
Peter Nandoria,1 ID and Lai-Sang Youngb,1,2 ID

Contributed by Lai-Sang Young; received August 19, 2022; accepted November 3, 2022; reviewed by Carlangelo Liverani and Luc Rey-Bellet

This paper is about a class of stochastic reaction networks. Of interest are the
dynamics of interconversion among a finite number of substances through reactions
that consume some of the substances and produce others. The models we consider are
continuous-time Markov jump processes, intended as idealizations of a broad class of
biological networks. Reaction rates depend linearly on “enzymes,” which are among
the substances produced, and a reaction can occur only in the presence of sufficient
upstream material. We present rigorous results for this class of stochastic dynamical
systems, the mean-field behaviors of which are described by ordinary differential
equations (ODEs). Under the assumption of exponential network growth, we identify
certain ODE solutions as being potentially traceable and give conditions on network
trajectories which, when rescaled, can with high probability be approximated by these
ODE solutions. This leads to a complete characterization of the ω-limit sets of such
network solutions (as points or random tori). Dimension reduction is noted depending
on the number of enzymes. The second half of this paper is focused on depletion
dynamics, i.e., dynamics subsequent to the “phase transition” that occurs when one
of the substances becomes unavailable. The picture can be complex, for the depleted
substance can be produced intermittently through other network reactions. Treating
the model as a slow–fast system, we offer a mean-field description, a first step to
understanding what we believe is one of the most natural bifurcations for reaction
networks.
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By a reaction network, we refer loosely to a collection of substances or entities that interact
through reactions. In each reaction, some subsets of materials are consumed and others
are produced, following rules of interconversion that often depend on concentrations of
the substances present. Reaction networks occur ubiquitously in nature: They include
chemical networks (1), metabolic networks (which describe the metabolic and physical
processes that govern cellular function) (2–4), microbial food webs (5), ecological
networks that describe interspecies competition and cross-feeding (6, 7), epidemiological
networks (8), and economic networks modeling exchanges of products and services
(9), to give just a few examples. Questions surrounding growth and depletion are of
fundamental interest in the theory of reaction networks. Many types of networks, such
as those describing biological systems, have the capacity for sustained growth; see ref. 10
and its references. Depletion also occurs naturally; the depletion of certain substances,
e.g., dopamine, is known to lead to abnormal brain activity.

Mathematically, reaction networks are modeled by high-dimensional dynamical
systems, deterministic or stochastic. Numerical simulations have revealed rich and
diverse phenomena. Some rigorous results, most of which in idealized settings, have
also appeared, e.g., refs. 11–13. A challenge in this emerging area is the development of
analytical tools to quantify and elucidate new phenomena.

In this paper, we present some rigorous results for a class of stochastic reaction
networks. Our models are also idealized but more realistic than those in many
rigorous studies. Informally, our network consists of N substances present in quantities
X1(t), . . . , XN (t) at time t ≥ 0 and a collection of reactions {Jk} which alter the Xn(t).
Each Jk is facilitated by a number of “enzymes” (borrowing language from metabolic
networks) which are among the N substances. Mathematically, the reaction network is
modeled by a continuous-time Markov process in RN , where each reaction Jk takes place
at an exponentially distributed time at a rate that depends on its associated enzymes. An
important constraint is that Xn cannot be negative, so that when its clock goes off, a
reaction takes place only if all of the required upstream materials are present.

The following questions arise naturally:

1. Can the dynamics of such stochastic reaction networks be described by mean-field
approximations?

Significance

Many biological, chemical, and
social phenomena that involve
the interaction of large numbers
of substances or agents are
modeled as reaction networks.
Mathematically, reaction
networks are high-dimensional
dynamical systems, deterministic
or stochastic. Numerical
simulations have revealed a rich
and diverse landscape, one that
poses a nontrivial challenge for
analysts. In this paper, we
consider a class of linear
stochastic reaction networks
designed to capture certain
salient characteristics of real
biological networks, yet
sufficiently idealized to permit
analytical approaches. We
present rigorous results on two
network phenomena: exponential
growth of network size and
depletion of one of the
substances involved. Both
phenomena occur naturally and
are known to have biological
consequences.

Author affiliations: aDepartment of Mathematical
Sciences, Yeshiva University, New York, NY 10016; and
bCourant Institute of Mathematical Sciences, New York
University, New York, NY 10012

Author contributions: P.N. and L.-S.Y. designed research,
performed research, contributed new reagents/analytic
tools, and wrote the paper.

Reviewers: C.L., Universita degli Studi di Roma Tor
Vergata; and L.R.-B., University of Massachusetts
Amherst.

The authors declare no competing interest.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1P.N. and L.-S.Y. contributed equally to this work.
2To whom correspondence may be addressed. Email:
lsy@cims.nyu.edu.

This article contains supporting information online
at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2214282119/-/DCSupplemental.

Published December 16, 2022.

PNAS 2022 Vol. 119 No. 51 e2214282119 https://doi.org/10.1073/pnas.2214282119 1 of 12

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2214282119&domain=pdf&date_stamp=2022-12-16
https://orcid.org/0000-0001-8238-6653
https://orcid.org/0000-0003-3257-1134
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lsy@cims.nyu.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214282119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214282119/-/DCSupplemental


2. In the case of sustained network growth, how to describe its
large-time behavior?

3. What happens if one of the substances depletes?

In this paper, we answer these questions for linear stochastic
reaction networks, i.e., the rates at which reactions occur depend
linearly on the quantities of enzymes present. Before presenting
our results, we first recall some previous work.

Related Literature. An important early result is ref. 14, which
considered a setting more general than ours and answered
Question 1 in the affirmative on finite time intervals. This
paper laid the groundwork for how network trajectories, when
suitably rescaled, are approximated by the system’s mean-field
ODE solution. The theory initiated in ref. 14 in fact goes well
beyond this mean-field ODE picture; see, e.g., ref. 15.

Among reaction networks, a special case is when all the Xn
increase with time or when the matrix B in the limiting mean-
field linear ODE ẋ = Bx has nonnegative entries. This special
case can be thought of as a continuous-time multitype branching
process; see the classical reference (16). In ref. 17, the author
carried out a detailed study of Question 2 under these conditions.
Here, the linear mean-field ODE achieves maximum exponential
growth along a unique eigendirection, and all initial conditions
converge to this leading eigendirection by the Perron–Frobenius
Theorem.

It seems that for some special matrices B, Question 2 can be
answered by techniques related to those used in generalized urn
models and stochastic approximations; see, e.g., the survey paper
(18) (and references therein) and the techniques of ref. 19.

Two other papers to which our work is related are ref. 10,
which explored the origin of exponential growth in (nonlinear)
scalable reaction networks, modeling them as (stochastic) differ-
ential equations, and ref. 13, which studied large deviations in
mean-field approximations in the large volume limit of statistical
mechanics.

Our Results. Theorems 1–3 answer Questions 1 and 2 above in
the setting of linear stochastic networks. Our setup generalizes
that in ref. 17 as we assume only exponential growth in norm,
allowing the matrix B to have negative entries. For such a matrix,
solutions of the ODE need not remain positive for all t ≥ 0,
i.e., depletion can occur, at least on the level of the ODE. In
Theorems 1 and 2, we prove that with high probability, mean-
field approximation in the sense of (14) holds for as long as
the network trajectory remains positive. Our proof of this result
follows techniques in ref. 17. For initial conditions for which the
solutions remain positive for all time, Theorem 3 gives a complete
characterization of the limiting behavior of network trajectories
as t → ∞. We observe also that under certain conditions, ω-
limit sets of the full system can be deduced from the dynamics of
enzymes alone—a substantial dimension reduction when only a
small fraction of the substances are enzymes.

Theorem 4 describes postdepletion dynamics, offering a
partial answer to Question 3. As discussed above, depletion in
reaction networks can be a consequential phenomenon. To our
knowledge, it has not been studied before aside from ref. 10,
which noted that depletion leads to different invariant measures.
In other previous work, a number of authors, e.g., refs. 17 and
13, imposed conditions to avoid depletion.

When a substance depletes, one might think that the resulting
dynamics are equivalent to those obtained by removing that
substance from the equation altogether, but it is not that simple.
The depletion of substance N on the level of the mean-field

equation means that on average substance N is consumed faster
than it is produced. When it is used up, reactions that rely on it
as upstream material are paused, but these reactions will resume
once substance N becomes available again, such as when it is
produced by some other viable reactions. Thus, the depletion
of one substance can cause a subset of reactions to become
unreliable, in the sense that they may or may not go forward when
their clocks ring depending on the availability of the “depleted
substance” at that moment in time. In Theorem 4, we show
that such dynamics, suitably rescaled, can be approximated by a
(nonlinear) ODE that takes into consideration this availability. A
crucial observation here is that following depletion, the rescaled
network behaves like a slow–fast system.

Results

We begin with a description of the models considered in this
paper. This is followed by statements of the main results.

A. Model Description. We consider a stochastic reaction network
described by a continuous time Markov process

X (t) = (X1(t), . . . , XN (t)), t ≥ 0 ,

on NN , where N = {0, 1, 2, . . .} and N ∈ Z+ is the number
of substances in the network. For n = 1, 2, . . . , N , Xn(t) is the
quantity of substance n present at time t.

There are K possible chemical reactions J1, . . . , JK , each
involving a subset of the N substances. When Jk occurs it
instantaneously changes the value of Xn by an amount ak,n, i.e.

Xn(t+) = Xn(t−) + ak,n.

Here, ak,n ∈ Z can be positive, zero, or negative. In the case
ak,n < 0, we say that substance n is upstream for reaction k. If
ak,n > 0, we say that substance n is downstream for reaction k.
In the case ak,n = 0, substance n is not involved in reaction k.

Associated with each Jk is a time-dependent exponential clock
Rk = Rk(X ). When this clock rings, reaction k occurs provided
that all upstream substances are available in sufficient quantity,
i.e., provided that Xn ≥ max{0,−ak,n} for all n. If this condition
is not satisfied, reaction k does not occur. This ensures that
Xn ≥ 0 at all times, an important biological constraint.

We view the substances involved in the definition of Rk as
facilitating reaction Jk and refer to them as “enzymes” for this
reaction. Notice that enzymes are themselves produced by the
network.

We do allow substances to enter or leave the network. That is,
it is not required that

∑N
n=1 ak,n = 0. For example, we may have

ak,n = 1 (or −1) and ak,m = 0 for all other indices m. In this
case, the reaction Jk is to be thought of as a substance n entering
from (or dissipating to) the environment external to the network.

Equivalently to the above description, we can define X (t)
through its Markov generator G. Let f : NN

→ R be a bounded
function. Then

(G(f ))(x1, . . . , xN ) [1]

=
K∑

k=1

Rk(x1, . . . , xN )1{x1≥max{−ak,1,0},...,xN≥max{−ak,N ,0}}

∗ [f (x1 + ak,1, . . . , xN + ak,N )− f (x1, . . . , xN )]. [2]

Remark 1: The case ak,n ∈ Q can be easily reduced to the
case ak,n ∈ Z by changing the units of all of Xn (such as
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multiplying by the common denominator of all the rational
numbers). The case when some ak,n are irrational could lead
to nonlattice distributions, which could possibly have different
behaviors; we do not consider that here.

We have defined above a general stochastic reaction network.
In this paper, we study the linear case, where for each reaction
Jk, the clock rate has the form

Rk =
N∑

i=1
αk,iXi, αk,i ≥ 0.

It is easy to check that by renaming the reactions; one may assume
that each reaction k is fueled by exactly one enzyme Ek, so that
Rk = αkXEk .

To summarize, the following is assumed throughout. We consider
a linear stochastic reaction network defined by a Markov processes
X (t) = (X1(t), . . . , XN (t)), t ≥ 0, where Xn(t) ∈ N is the
quantity of substance n present at time t, and X (t) is changed by
K reactions J1, . . . , JK according the following rules: Each Jk is
mediated by an enzyme Ek (which is one of the N substances); it
carries an exponential clock with rate αkXEk . When the clock for
Jk rings, Xn is changed instantaneously by an amount equal to
ak,n ∈ Z provided that there is sufficient upstream material for
Jk to proceed.

B. Stochastic Tracing of Mean-Field Solutions. Let B = (bn1,n2)
be the N × N matrix with entries

bn1,n2 =
∑

k:Ek=n2

αkak,n1 ; [3]

and set bn1,n2 = 0 when the sum is empty, i.e., when n2 is not an
enzyme. Under positivity assumptions, it is reasonable to expect
solutions of the initial value problem

ẋ = Bx, x(0) = x0, [4]

to provide mean-field approximations of X (t). Below we make
these ideas precise.

Let O+ denote the open positive orthant, i.e.,

O+ := {(x1, . . . , xN ) ∈ RN : xi > 0 for all i}.

Given x0 ∈ O+, we say x(t) leavesO+ transversally at t = T > 0
if x(t) ∈ O+ for t < T , x(T ) ∈ {xn = 0 and xk > 0 for k 6= n}
for some n, and x(t) meets {xn = 0} transversally at t = T . Recall
that by definition, X (t) ≥ 0 for all t ≥ 0. We call T the first
depletion time if it is the smallest t for which either Xn(t) = 0 for
some n or the clock for a reaction rings but the reaction cannot
go forward due to insufficient upstream material.

A first example of stochastic tracing is the classical result by
Kurtz (14), which implies in our setting the result stated as
Theorem 1 below.

Theorem 1. (follows from (14)) Let x(t), t ∈ [0, T ], be a solution
of Eq. 4 with x(0) = x0.

(a) Assume {x(t), t ∈ [0, T ]} ⊂ O+. Then, for all ε, ε′ > 0, there
exists L0 = L0(x0, T, ε, ε′) so that for every L > L0,

P

(∥∥∥∥X (t)
L
− x(t)

∥∥∥∥ ≤ ε ∀t ∈ [0, T ]

∣∣∣∣∣X (0) = bLx0c

)
≥ 1− ε′.

[5]

(b) Assume x(t) ∈ O+ for t < T , and x(t) exitsO+ transversally
at time T . Then, for all t > T and for all ε′ > 0 there exists
L0 = L0(x0, t, ε′) so that for every L > L0,

P(first depletion time < t | X (0) = bLx0c) ≥ 1− ε′.

Theorem 1, the proof of which we omit, compares the rescaled
dynamics of the stochastic reaction network with solutions of the
ODE for finite time. Further assumptions are needed to extend
these results to infinite time as we now discuss.

Let
λ1 := sup

λ∈3

{<(λ)}, [6]

where3 is the set of eigenvalues of B and<(λ) is the real part of
λ. As X (t) with larger ‖X (t)‖ deviates less after rescaling from
its ODE mean-field solution, to facilitate stochastic tracing for
infinite time, it is natural to assume

Condition 1 λ1 > 0.

A second condition, also necessary for traceability, is that the
ODE solution remains in O+. We will, in fact, assume a little
more.

For a solution x(t) of Eq. 4 with x(t) = x0, let φ(t) =
x(t)/‖x(t)‖ be its projection to the unit sphere SN−1. It is easy
to check that the flow defined by Eq. 4 projects to a well-defined
flow on SN−1. Let φ0 = φ(0). Recall that the ω-limit set of φ0
is given by

ω(φ0) := {φ ∈ SN−1 : φ(ti)→ φ for some sequence ti →∞}.

We say φ0 is ω-stable if for any open neighborhood U of ω(φ0),
there is some δ > 0 so that for all φ′0 ∈ SN−1 δ-close to φ0,
ω(φ′0) ⊂ U .

Given x0 ∈ RN , we say the solution x(t) of Eq. 4 is potentially
traceable (for all times) if

(i) x(t) ∈ O+ for all t ≥ 0, and
(ii) φ0 = x0/‖x0‖ is ω-stable and ω(φ0) ⊂ O+.

The following is our first result on infinite-time stochastic tracing.

Theorem 2. Assume (*), and let x0 be such that x(t) is potentially
traceable. Then, for all ε, ε′ > 0, there exists L0 = L0(x0, ε, ε′) so
that for every L > L0,

P

(∥∥∥∥X (t)
L
− x(t)

∥∥∥∥ ≤ ε‖x(t)‖ ∀t ≥ 0

∣∣∣∣∣X (0) = bLx0c

)
≥ 1−ε′.

[7]

The potential-traceability condition above can be seen as a
relaxation of the Perron–Frobenius assumption: if the matrix B
is strictly positive, i.e., bn1,n2 > 0 for all n1, n2, then (*) holds
and all solutions in O+ are potentially traceable.

C. Asymptotic Behavior in the Case of Exponential Growth.
Next, we turn to the behavior of X (t) as t → ∞, discussing
separately the asymptotic behavior of 8(t) := X (t)/‖X (t)‖
and ‖X (t)‖. For 80 = X (0)/‖X (0)‖, the ω-limit set ω(80) is
defined as above.

Theorem 3. Assume (*), and let B, x0, ε′, and L0 be as in
Theorem 2. Then, the following hold with probability 1− ε′:
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(a) ω(80) is either
(i) a (nonrandom) point,

(ii) a random point, or
(iii) a random manifold diffeomorphic to a torus.

(b) for some k ≥ 1 depending on B, e−λ1t t−(k−1)
‖X (t)‖ converges

to a random variable as t →∞.

Theorem 3 has the following interpretation: For initial
conditions X (0) = Lx0 where L > 0 is sufficiently large and x0
is such that x(t) is potentially traceable, Theorem 3(b) together
with ω(φ0) ⊂ O+ implies that with probability close to 1, all
substances in the network grow exponentially as t → ∞, with
Xi(t) ∼ e−λ1t t−(k−1) for all i. Theorem 3(a) implies that the
proportions of the substances present, i.e., the ratios of the Xi(t),
either tend to a fixed configuration (scenario i) or a random
configuration (scenario ii) or it can fluctuate in either a periodic
or quasiperiodic manner (scenario iii).

It seems plausible, even likely, that under the condition λ1 >
0, the following in fact holds for all initial conditions: With
probability one, either one of the substances depletes in finite
time, or the dynamics of X (t) as t → ∞ are as described in
Theorem 3. A proof will require a different set of considerations
than those in this paper.

Not surprisingly, ω-limit sets of stochastic trajectories are
related to those of their mean-field ODEs. Leaving details for
later, we comment here on the factors that determine the latter.
An eigenvalue λ of B is called a leading eigenvalue if <(λ) = λ1.
Decomposing B into real Jordan blocks {Ji}, we say that Ji is a
leading block if it is associated with a leading eigenvalue and
call Ji a maximal leading block if it has the largest algebraic
multiplicity among all leading blocks. Then, given x0 ∈ O+,
ω(φ0) is determined by whether the eigenvalues associated with
the maximal leading blocks are real or complex, the dimension
and geometry of the subspaces corresponding to maximal leading
blocks, and the location of φ0 in relation to these structures; the
value k in part (b) is the algebraic multiplicity of maximal leading
blocks.

Reduction to Network of Enzymes. We will show that under
certain conditions, the large-time behavior of X (t) is captured by
a reduced model involving only the dynamics of enzymes. This
is a significant dimension reduction when only a small fraction
of the N substances act as enzymes. Writing

xT = (x̂1, . . . , x̂M ; x̃1, . . . , x̃N−M ) = (x̂, x̃) ∈ RM
× RN−M ,

where the first M substances are enzymes and the remaining
N −M are not, we observe that the matrix B defined in Eq. 3
takes the form

B =
[

B̂ 0
B̃ 0

]
, [8]

where B̂ ∈ RM×M and B̃ ∈ R(N−M)×M . Positivity issues aside,

˙̂x = B̂x̂ [9]

gives the mean-field approximation of the dynamics in the
network of enzymes. We claim that this subnetwork captures
the large-time behavior of the full system provided that the
nonenzyme substances are always present in sufficient quantities.

Corollary 1. Assuming (*) and writing B as in Eq. 8, let x̂0 be
such that x̂(t) is potentially traceable with respect to Eq. 9. Let

φ̂0 = x̂0/‖x̂0‖, and assume that B̃ψ > 0 for all ψ ∈ ω(φ̂0).
Then the full system ẋ = Bx has an open set of potentially traceable
solutions the ω-limit sets associated to which are diffeomorphic to
ω(φ̂0).

This corollary, the proof of which is left to the reader, follows
immediately from the algebraic structures that determine ω-limit
sets (as explained in the proof of Proposition 1), together with
the fact that the leading Jordan blocks of B are the same as those
of B̂.

D. Dynamics Following Depletion. To motivate our result, con-
sider the following situation. Let x0 ∈ O+ be such that
x0 = X (0)/L for some large L, and let x(t) be the solution
of Eq. 4 with x(0) = x0. We assume x(t) ∈ O+ for t < T0,
leaving O+ transversally at time T0. Theorem 1 implies that
X (t)/L is well approximated by x(t) up to a little before time
T0. We assume further that xN (T0) = 0 and xn(T0) > 0 for all
n 6= N , and let

D = {y = (y1, . . . , yN−1) : y > 0, [B(y1, . . . , yN−1, 0)]N < 0} ,
[10]

i.e.,D ⊂ RN−1 consists of those y > 0 for which the vector field
defining the ODE Eq. 4 is transversal to RN−1

× {0} at (y, 0)
and points away from O+. Observe that D is open, and if 5 is
the orthogonal projection from RN to its first N−1 coordinates,
then 5(x(T0)) ∈ D.
Informal discussion. When XN (t) = 0, reactions relying on
substance N either as an enzyme or as a upstream material cannot
take place. Let KN ⊂ {1, . . . , K } denote the set of all other
reactions. Suppose further that no reaction k ∈ KN produces
substance N . Then, it is easy to see that XN (t) = 0 for all
t > T0, and the dynamics of 5X (t) are approximated by an
ODE as in Eq. 4 with the set of reactions K replaced by KN .
That is, the analysis is as before except that it now involves only
N − 1 substances.

But y ∈ D does not imply that the reactions k ∈ KN cannot
produce substance N . If substance N is produced, then the
reactions in K \ KN can, in principle, resume, though it is
reasonable to expect XN (t) to hover around 0 as the mean drift
is for XN to deplete. Since we may assume Xn(t) = O(L) for
n 6= N , reactions k with Ek = N take place so rarely relative
to other reactions that they can be ignored, but there may be a
nontrivial number of reactions requiring substance N as upstream
material, and these reactions may take place a nonnegligible
fraction of the time when their clocks ring, enough to affect
the course of events. One can thus interpret the situation as one
in which the ability of the system to produce the reactions in
K \ KN is impaired but failure is not necessarily total, and that
must be factored into the subsequent dynamics of X (t).

To formulate Theorem 4, we let D ⊂ RN−1 be as in Eq. 10.
For y ∈ D, consider the Markov process Zy(s), s ≥ 0, on N with
generator

Gy(f )(m) =
∑

k≤K,Ek<N

αkyEk1m≥−ak,N [f (m + ak,N )− f (m)],

[11]
where f : N → R is a bounded test function. Note that Zy(s)
depends solely on y and on network parameters, not on X (t).
Assuming

GCD({ak,N : Ek < N }) = 1, [12]
where GCD denotes greatest common divisor, and the process
Zy has a unique invariant probability measure µy. This is
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because for large m, Zy has a negative drift and Eq. 12
guarantees irreducibility hence ergodicity by Foster’s Theorem.
For simplicity, Eq. 12 is assumed throughout, though it is not a
necessary condition; see Remark 2.

For 1 ≤ n1, n2 ≤ N − 1, we define the (N − 1)× (N − 1)
matrix

(D(y))n1,n2 =
∑

k:Ek=n2

αkak,n1 µy(N ∩ [−ak,N ,∞)). [13]

Theorem 4. (a) Let D be as above. Then, the solution y(t) of the
ODE

ẏ = F(y) := D(y)y, y(0) = y0, [14]

exists and is unique for as long as y(t) ∈ D.
(b) Assume for some y0 ∈ D and T > 0 that y(t) ∈ D for

all t ∈ [0, T ]. Then, for any z ∈ N and any ε, ε′ > 0, there
exists L0 = L0(y0, z, T, ε, ε′) such that the following holds: Given
X (t) with L > L0, let Y L(t) = 1

L5X (t). If Y L(0) = y0 and
XN (0) = z, then

P
(∥∥Y L(t)− y(t)

∥∥ ≤ ε ∀t ∈ [0, T ]
)
≥ 1− ε′.

E. Examples. Before we proceed to the proofs of our main results,
we provide three examples to illustrate some of the main points of
the present work. The first example is a specific stochastic reaction
network illustrating Theorem 3(ii). The second example is the
explicit computation of the mean-field ODE following depletion
in a simple situation; while the third example illustrates multiple
phenomena related to depletion.

Example 1 An example with random asymptotic direction of
growth. For illustration, we present a specific example with 3
substances and 4 reactions, ϕ1, . . . ,ϕ4. Below “∗” denotes the
environment external to the network, Ei is the enzyme facilitating
reaction i, and Ui is a unit of substance i.

• ϕ1 : ∗ → 10U1 + 4U2 + 6U3; E1 = 1,α1 = 0.5
• ϕ2 : ∗ → 6U1 + 5U2 + 3U3; E2 = 1,α2 = 0.5
• ϕ3 : 9U3 → 7U2; E3 = 2,α3 = 1
• ϕ4 : 9U2 → 7U3; E4 = 3,α4 = 1.

We find that the matrix

B =

[16 0 0
9 7 −9
9 −9 7

]
, [15]

as defined in Eq. 3, has the leading eigenvalue λ = 16 with two
dimensional eigenspace E16 spanned by the vectors [1, 1,−1]T ,
[1,−1, 1]T . The other eigenvalue is −2. Sample trajectories are
shown on Fig. 1.

Example 2 Explicit computation of F(y) in a special case. We
compute explicitly the ODE Eq. 14 in the case where substance
N depletes and

ak,N ∈ {−1, 0, 1} ∀k = 1, . . . , K . [16]

Let B0+ and B0− be matrices given by

(B0+)n1,n2 =
∑

k:Ek=n2
ak,N =0,1

αkak,n1 , (B0−)n1,n2 =
∑

k:Ek=n2
ak,N =−1

αkak,n1 ,

[17]

Fig. 1. Six sample trajectories of the stochastic reaction network in Example
1. The simulations started from the initial condition x0 = [1,1,1]T with
t ∈ [0,0.25] and L = 5,000. According to Theorem 3(ii), with high probability,
a trajectory will converge to the plane E16, and after some initial uncertainty,
it will tend to infinity along a random direction.

1 ≤ n1, n2 ≤ N − 1. When their clocks ring, reactions k in
the sum B0+ always occur, whereas those in B0− occur with
probability µy{z ≥ 1} according to Theorem 4. We need
therefore to compute µy{z ≥ 1}.

For the Markov process Zy(s), the rate of going from z to z +1
and z − 1 are AT

+y and AT
−y, respectively, where

(A+)n =
∑

k:Ek=n, ak,N =1

αk, (A−)n =
∑

k:Ek=n, ak,N =−1

αk,

and 0 cannot go to −1. A simple computation (which we leave

to the reader) gives µy{0} = 1−
AT

+y
AT
−y

.
It follows that when Eq. 16 holds, the ODE Eq. 14 is given

by

ẏ = (B0+)y +
AT

+y

AT
−y

(B0−)y, y(0) = y0.

Example 3 Qualitatively different behaviors after depletion. A
simple but important point is that knowing only the ODE ẏ = By
describing the mean-field dynamics for a reaction network N ,
one cannot know the properties—not even qualitatively—of the
Markov process after depletion. This is because B carries much
less information than N .

For example, let N be an arbitrary network, and let N ′ be
obtained fromN by adding two more reactions JK +1, JK +2, with
reaction rates αK +1 = αK +2 = 1, enzymes EK +1 = EK +2 = 1
and

aK +1,n =


p if n = a;
1 if n = N ;
0 otherwise;

aK +2,n =


−p if n = a,
−1 if n = N,
0 otherwise,

[18]
for some p 6= 0 and a < N . Note that the mean-field equation
for the two networks are identical before depletion, because the
outcomes of reactions K + 1 and K + 2 cancel each other
in mean. But the ODE Eq. 14 can differ substantially upon
depletion of substance N ; reaction K + 2, which occurred with
equal probability as K + 1 before depletion, may now occur less
frequently. If, e.g., p� 1 and no other substance depletes, then
upon depletion of substance N , the combined effect of reactions
K + 1 and K + 2 produces substance a in much larger quantity
than it is consumed.
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Fig. 2. Sample trajectories of N and N ′. For N , a network of two
substances, stable and unstable directions of B are indicated in red. Network
trajectories (green and blue) exemplify scenarios (i) and (ii) in the text. Also
shown is a sample trajectory (orange) of N ′ with the same initial condition
as the blue one. The mean-field pictures in O+ are the same for N and N ′
(but the trajectories of N ′ oscillate more around the mean). Furthermore,
N ′ can be chosen so X2 grows exponentially upon depletion of X1, leading to
qualitatively different behaviors between the blue and orange trajectories.

We present in Fig. 2 an example that illustrates a number of
scenarios discussed in this paper. Consider a network N of two
substances; the matrix B describing its mean-field dynamics has
a stable and an unstable eigendirection, each having a branch
that points into O+. Depending on which side of the stable
eigendirection the initial condition lies, one of the following may
occur: i) The ODE solution y(t) is potentially traceable; it stays
in O+ for all t > 0 and becomes asymptotically close to the
unstable eigendirection with ‖y(t)‖ → ∞ as t → ∞. ii) The
solution curve exits O+ through the x2-axis, i.e., X1 depletes.

In case (ii), let us assume for definiteness that the ODE solution
y(t) exits O+ transversally on the vertical axis, i.e., x1 = 0
with a downward drift for x2, and viable network reactions
postdepletion do not change the downward trend for X2. We
now modify N to N ′ as above (except that X1 is depleted and
a = 2).

Depending on the magnitude of p and consequently the failure
rate of reaction K + 2 when its clock rings, the subsequent
dynamics can cause X2(t) to grow or decrease exponentially with
high probability. Indeed by choosing p large enough, X2(t) can
grow faster than the unstable eigenvalue of B, i.e., it is possible
for the depletion of a substance to lead to faster network growth!

If X2(t) decreases toward 0, several scenarios are possible: it
can happen that X (t0) = (0, 0) for some t0 and the network
stops forever; trajectories that do not reach (0, 0) may hover
around (0, 0) for some time; under most conditions, they will
eventually cross-over to the other side of the stable eigendirection,
“reviving” the network. For smaller values of ‖X (t)‖, trajectories
of the Markov process are not described by mean-field dynamics,
and a complete analysis is beyond the scope of the present paper.

Main Ideas of Proofs

F. Geometry of Potentially Traceable ODE Solutions (Prelimi-
naries). Theorems 1 and 2 assert that under suitable conditions,
X (t) can be seen as stochastic perturbations of solutions of linear
ODEs. We consider the initial value problem Eq. 4 where B is an
arbitrary N × N matrix. As before, we let φ(t) = x(t)/‖x(t)‖
denote the projection of solutions of Eq. 4 to the unit sphere
SN−1. Recall that potential traceability (defined just before the

statement of Theorem 2) entails two conditions: positivity and
ω-stability of φ0. We begin with a discussion of the latter, giving a
complete characterization of ω(φ0) and showing that for almost
all initial conditions x0, φ0 is ω-stable.

Proposition 1 Given B, there is an exceptional set E ⊂ RN , a
subspace of dimension < N such that for every x0 6∈ E , φ0 is
ω-stable. Moreover, ω(φ0) is either

i) a fixed point,
ii) diffeomorphic to a circle on which the dynamics are periodic, or

iii) diffeomorphic to a d-dimensional torus, 1 < d ≤ N/2, on
which the dynamics are quasiperiodic.

The proof of Proposition 1 is elementary; it involves treating
Jordan blocks individually and then combining the results.
Details are given in SI Appendix, S1. The Perron–Frobenius
picture, where all the entries of B are strictly positive and ω(φ0)
is a fixed point, is well known. Cases (ii) and (iii) are associated
with leading complex eigenvalues. We give a sense of how the
invariant tori picture comes about:

Suppose the complex Jordan form of B is diagonal with
eigenvalues λ ± iµ1, . . . , λ ± iµN/2. Let Vk ⊂ RN denote
the 2D subspace corresponding to the eigenvalue λ ± iµk, and
assume for simplicity that the Vk is orthogonal. Consider x0 with
‖x0‖ = 1, and denote its coordinates in Vk by (xk,1, xk,2). Let
rSk be the circle of radius r in Vk, and let

TN/2 = TN/2
x0

(r1, . . . , rN/2) =
N/2⊕
k=1

rkSk, rk =
√

x2
k,1 + x2

k,2.

Then, the rescaled flow e−λ1tx(t) leaves invariant both the unit
sphere SN−1 in RN and TN/2. That is, SN−1 is foliated by
N/2-dimensional tori left invariant by the projected flow φ(t).
It follows that for each x0 ∈ SN−1, ω(φ0) ⊂ TN/2

x0 .
As to whether ω(φ0) is all of TN/2

x0 or part of it, note
that restricted to TN/2, φ(t) is a linear flow. Recall that a set
{s1, . . . , sl } ⊂ {µ1, . . . ,µN/2} is called rationally independent if
for all k = (k1, . . . , kl ) ∈ ZN

\{0},
∑l

i=1 siki 6= 0. By a standard
result in dynamical systems (20), the closure of any orbit of a
linear flow on TN/2 is a submanifold of TN/2 diffeomorphic to a
torus of dimension d where d is the largest rationally independent
subset of {µ1, . . . ,µN/2}.

For arbitrary x0 ∈ RN , since the flows x(t) andφ(t) commute,
i.e., φ(t) = x(t)/‖x(t)‖, ω(φ0) is determined by x0/‖x0‖. This
completes our discussion of the invariant tori picture.

We comment on the geometry of B in relation to traceability.
In addition to the subspace E in Proposition 1, another relevant
subspace is F , the smallest subspace of RN such that for every
x0 6∈ E , ω(x0) ⊂ F ∩SN−1. Both E andF are identifiable given
B.

For intuition on these subspaces, let RN = E+
⊕ E∗ be such

that E+ is the sum of the generalized eigenspaces associated with
the leading eigenvalues of B and E∗ the subspace associated with
all other eigenvalues. Then, F ⊂ E+, and x0 ∈ E∗ cannot
be ω-stable because ω(φ0) is trapped inside E∗ while a small
perturbation of x0 will give rise to anω-limit set contained in E+.
It follows that E ⊂ {x+

0 = 0}, where x0 = (x+
0 , x∗0) ∈ E+

⊕E∗.
To properly identify E and F , however, we need to consider

also polynomial growth. Suppose for definiteness that B consists
of a single Jordan block with real eigenvalues λ with algebraic
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multiplicity k > 1, i.e., there is a basis of unit vectors
{u1, u2, . . . , uk} such that

Bu1 = λu1, and Buj = λuj + uj−1 for j > 1.

Then, F = 〈u1〉, and E = {xk
0 = 0} where x0 =

∑
j xj

0uj. For
x0 ∈ E , φ0 cannot beω-stable because perturbing to xk

0 > 0 gives
ω(φ0) = u1, while perturbing to xk

0 < 0 gives ω(φ0) = −u1.
Turning next to positivity, a precondition is clearly that

F ∩ O+
6= ∅. It does not imply ω(φ0) ⊂ O+, and even

when that is the case, x(t) may venture outside of O+ before
coming back in—unlike the Perron–Frobenius situation studied
in (17). When x0 is potentially traceable, however, all x′0 in a
neighborhood of it are, so when the set of potentially traceable
initial conditions is nonempty, it is an open set.

Observe that when the leading eigenvalues consist of a single
pair of numbers λ ± iµ, there can be no potentially traceable
trajectories, because x(t) cannot remain in O+ for all time.
Indeed, let mr and mc denote the maximal algebraic multiplicity
among the real and complex leading blocks, respectively, and let
Fr be the eigenspace corresponding to the real leading blocks
with the largest algebraic multiplicity.

Lemma 1 When both real and complex leading blocks are present,
the set of potentially traceable initial conditions is nonempty when
Fr ∩O+

6= ∅ and mr ≥ mc . Furthermore,

i) when mr > mc , ω(x0) is a point;
ii) when mr = mc , ω(x0) is diffeomorphic to a D-dimensional

torus, where D ≤ the number of complex leading blocks with
multiplicity equal to mc .

We omit the proof, which is straightforward though nota-
tionally tedious. The following example in three dimensional
(3D) captures the main idea. Suppose B has a single leading real
eigenvalue and a pair of complex conjugate leading eigenvalues.
Assume for definiteness that λ1 > 0. Letting Vr and Vc denote
the real and complex eigenspaces of B, an initial condition
x0 = (xr

0, xc
0) with |xr

0| > ‖x
c
0‖ gives rise to a solution x(t) that

stays inside a cone around Vr , i.e., it projects to a neighborhood
of Vr∩S2 in S2, as ‖x(t)‖ → ∞. Such a solution can be positive
if Vr points intoO+ and |xr

0|/‖x
c
0‖ is sufficiently large. It is easy

to see that ω(φ0) is then a circle centered at Vr ∩ S2, and φ0 is
ω-stable.

Since solutions do leaveO+—and that is the topic of Theorem
4—we record here a result that says that when x(t) leavesO+, it
is typical for it to exit transversally as defined earlier, before the
statement of Theorem 1.

Lemma 2 Let Bn : RN
→ R be the nth component of B, and

assume that Bn({xn = 0}) 6= {0} for all n. Then, there is a set
Ẑ that is the union of N immersed codimension-1 submanifolds of
RN such that for all x0 ∈ O+

\ Ẑ , if x(t) leaves O+, it does so
transversally.

Proof: There are two ways x(t) can leave O+ nontransversally.
One is through the interior of {xn = 0} ∩ O+ for some n; the
other is through {xn = xk = 0} for some n, k with n 6= k.

To treat the first, since Bn|{xn=0} is a linear map the image of
which is 6= {0}, its kernel Zn := {x ∈ {xn = 0} : Bn(x) = 0}
is a codim 1 subspace of {xn = 0}. No orbit can leave O+

through z ∈ {xn = 0} with Bn(z) > 0, and orbits that leave

O+ through z ∈ {xn = 0} with Bn(z) < 0 leave transversally
assuming z 6∈ {xk = 0} for some k 6= n. Nontransveral exits can
occur only, therefore, for x0 ∈ O+

∩ (∪N
n=1Ẑn), where Ẑn :=

{e−Btz : z ∈ Zn, t > 0}, and that is an immersed codimension-1
submanifold of RN .

To finish, {e−Btz : z ∈ {xn = xk = 0}} is also an immersed
codimension-1 submanifold of RN .

G. Dynamics of Exponentially Growing Networks (Proofs of
Theorems 2 and 3). Our strategy for proving Theorems 2 and
3 given a potentially traceable ODE solution x(t) consists of the
following two steps: The first is to apply Theorem 1 to ensure
that X (t), rescaled, follows x(t) until the projection of x(t) to the
unit sphere is sufficiently close to its ω-limit set (see Proposition
1). The second is to control deviations from x(t) for all times
from there on.

Our techniques for large-time deviation control follow closely
(17), which assumes a strong condition on the matrix B but gives
a detailed analysis for the dynamics associated with nonleading
eigenvalues, and those are the techniques we have emulated.
Another departure from (17) is that with no assumptions on the
structure of leading Jordan blocks, network trajectories will, in
general, have a positive probability of reaching the boundary of
O+ even when the corresponding ODE solution is potentially
traceable. Our analysis of deviation control, therefore, has to be
conditioned on nondepletion.

We assume throughout Condition (*), i.e.,

λ1 = sup
λ∈3

{<(λ)} > 0.

The following notation is used:

– Eλ is the generalized eigenspace corresponding to the eigen-
value λ,

– Pλ is the projection to Eλ with kernel
∑
µ6=λ Eµ, so that I =∑

λ∈3 Pλ.

Variance bounds for certain vector-valued martingales. We make
a small, technical modification of the definition of X (t) to allow
the first jump that makes one coordinate nonpositive to take
place, and then, the process is stopped forever. More precisely,
we define Y (t) by the generator

(GY (f ))(x1, . . . , xN )

=
K∑

k=1

αkxEk1{x1>0,...,xN>0}

∗ [f (x1 + ak,1, . . . , xN + ak,N )− f (x1, . . . , xN )].

Let τ be the stopping time defined by

τ = min{t : ∃n : Yn(t) ≤ 0}. [19]

Then, with X (0) = Y (0), we have X (t) = Y (t) for all 0 ≤ t <
τ . If τ <∞, define Y (t) = Y (τ ) for all t ≥ τ .

We now use a standard approach to multitype branching
processes following the proof in ref. 17, Theorem 3.1, except
that in ref. 17, τ = ∞ and we need to index the martingales
below with the time t ∧ τ := min{t, τ } as opposed to just t.

For z ∈ ZN
+, we define the process

Yz(t) = e−B(t∧τ)Y (t)− z [20]
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where Y (0) = z. For z fixed,Yz(t) is a vector-valued martingale.
Indeed, if t < τ , then the martingale property follows from a
direct computation as in ref. 17, Lemma 9.2. If t ≥ τ , then the
process Yz(t) is constant in t and so the martingale property is
trivial.

What makes the stochastic tracing possible is exponential
network growth together with the following variance bounds:

Lemma 3 [cf (17)] Let λ ∈ 3. Then, given δ > 0, there exists C4
independent of z such that

(a) If <(λ) ≤ λ1/2, then

E‖PλYz(t)‖2 ≤ C4e(λ1+3δ−2<(λ))t
‖z‖. [21]

(b) If <(λ) > λ1/2, then

E‖PλYz(t)‖2 ≤ C4‖z‖. [22]

A proof sketch for this result is given in SI Appendix, S2.
Let us fix also a constant C5 depending only on B so that for

any λ ∈ 3,
‖Pλ‖ ≤ C5. [23]

Lemma 3 will be used a number of times. First, we use it to
reduce the problem of deviation control to directions associated
with leading eigenvalues. As before, we define

E+ = ⊕λ∈3:<(λ)=λ1 Eλ.

Lemma 4 Let λ′ be such that max{λ1
2 , λ2} < λ′ < λ1 where

λ2 := max{<(λ) : λ ∈ 3, λ 6= λ1}. Then, there is a constant R
for which the following holds for all eigenvalues λ with <(λ) < λ1:
Given ε, ε′ > 0, there is L0(ε, ε′) so that for all L > L0, if z
satisfies

X (0) = z with ‖z − Lv‖ < ε2L, [24]

for some v ∈ E+ with ‖v‖ = 1, then

P
(

sup
t≥0

e−λ
′(t∧τ)
‖PλX (t ∧ τ )‖ > Rε2L

)
≤ ε′. [25]

The proof of this result, which is quite similar to that of
Proposition 2 below, is included in SI Appendix, S3.

Proof of Theorems 2 and 3 in a Special Case. For expositional
clarity, we first present—assuming Lemmas 3 and 24—a com-
plete proof of Theorems 2 and 3 for the case

(∗∗) λ1 ∈ 3, E+ = Eλ1 , and B|E+ = λ1(I |E+),

where I is the identity matrix, i.e., all leading eigenvalues are
real, and no leading Jordan block has off-diagonal 1s. There is
no restriction on the dimension of Eλ1 .

For v ∈ RN and ε > 0, writing ū = u
‖u‖ , we use

C(v, ε) := {u ∈ RN : ‖ū− v̄‖ < ε}

to denote the ε-cone centered at v.

Proposition 2 Assume (**), and let v ∈ O+
∩ Eλ1 be such that

‖v‖ = 1. Then, for every ε, ε′ > 0 for which C(v, 2ε) ⊂ O+,
there exists L0 = L0(ε, ε′) so that for all L > L0,

P(‖X (t)− Leλ1tv‖ < εLeλ1t
∀t ≥ 0

∣∣ ‖X (0)− Lv‖ < ε2L)

> 1− ε′.

Proof: We further decompose Pλ1 , the projection onto Eλ1 , as
follows. Let v1 = v, and let {v1, . . . , vk1} be an orthonormal basis
of Eλ1 . For i = 1, . . . , k1, let 5i denote the projection of RN to
the line spanned by vi, so that

I =
k1∑

i=1
5i +

∑
λ∈3,λ6=λ1

Pλ. [26]

We have shown in Lemma 4 that deviations of X (t) from Eλ1
are inconsequential. We now examine more closely projections
in the first sum above.

With z = X (0), we have ‖5i‖ ≤ C5 for all i,

‖51z − Lv‖ ≤ C5ε
2L, [27]

while
‖5iz‖ ≤ C5ε

2L, i = 2, . . . , k1. [28]

Moreover, with Yz(t) as defined in Eq. 20, we have, for all i,

5iYz(t) = 5ie−B(t∧τ)X (t ∧ τ )−5iz, [29]

= e−λ1(t∧τ)5iX (t ∧ τ )−5iz. [30]

Thus for i = 2, . . . , k1,

P(∃t ≥ 0 : ‖5iX (t ∧ τ )‖ ≥ εLeλ1(t∧τ))

≤
Eq. 27,Eq. 29 P(∃t ≥ 0 : ‖5iYz(t)‖ ≥ εL− C5ε

2L)

≤ P(∃t ≥ 0 : ‖Pλ1Yz(t)‖ ≥ εL− C5ε
2L). [31]

By Doob’s maximal inquality together with Eq. 22, this last
quantity is

≤
C4L

[εL− C5ε2L]2
= O

(
1
L

)
,

which can be made arbitrarily small by choosing L0 large.
Similarly,

P(∃t ≥ 0 : ‖51X (t ∧ τ )− Leλ1(t∧τ)v‖ > cεLeλ1(t∧τ))

can be made arbitrarily small.
Choosing L sufficiently large, we find

P(∀t ≥ 0 : ‖X (t ∧ τ )− Leλ1(t∧τ)v‖ < εLeλ1(t∧τ) ) > 1− ε′.
[32]

We now use the condition C(v, 2ε) ⊂ O+ to argue that X (t)
must violate ‖X (t) − Leλ1tv‖ < εLeλ1t for some time before τ
is reached. Hence, t ∧ τ in Eq. 32 can be replaced by t, which is
the desired result. �

Proof of Theorem 2: Theorem 2 is a corollary of Theorem 1
and Proposition 2. Let x(t) be the ODE solution with x(0) =
x0. Since we assume potential traceability of x0 and (**), the
projected solution φ(t) converges to some v ∈ Eλ1 ∩ O+. We
pick ε̂ > 0 so that C(v, 2ε̂) ⊂ O+, let T be large enough
that x(T ) ∈ C(v, ε̂2/2), and use Theorem 1 to guarantee that
X (t)/L follows x(t) up to time T . When applying Theorem 1,
choose ε small enough to guarantee X (T ) ∈ C(v, ε̂2) with high
probability. We are now in a position to apply Proposition 2 to
ensure tracing for all t ≥ T on a set of probability > 1− ε′. �
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Proof of Theorem 3: Recall that the martingale

Z(t) := e−(t∧τ)λ1Pλ1X (t ∧ τ )

is bounded in L2 by Eq. 22. Thus, Z(t) is uniformly integrable,
so Doob’s theorem implies the almost-sure convergence of Z(t)
as t → ∞ to a random variable v. By Proposition 2, ‖v‖ is
bounded away from 0 off a set of arbitrarily small probability.

We have argued in the proofs of Theorem 2 and Proposition 2
that assuming (**) and the potential traceability of x0, P(τ <∞)
can be made as small as we wish by choosing L0 large. The
statements below are true on a set of probability 1− ε′, namely,
for those sample paths for which τ = ∞, ‖v‖ 6= 0 and are not
in the set on the left hand side of Eq. 25.

Let 5 denote projection to ⊕λ∈3,λ6=λ1Eλ. Then,

e−tλ1X (t) = e−tλ1Pλ1X (t) + e−tλ15X (t).

As t →∞, the first term on the right side converges to v, and the
second converges to 0 by Lemma 4. Thus, e−tλ1X (t) converges
to a nonzero point in Eλ1 . It follows that 8(t) := X (t)/‖X (t)‖
converges a.s. to a point in Eλ1 ∩ SN−1.

In general, lim8(t) is a random point. In the case where
the leading Jordan block is unique, Eλ1 ∩ SN−1 consists of a
single point, namely the unique attractive fixed point for the
deterministic flow φ(t). This must, therefore, be the point to
which 8(t) converges. �

Complex Leading Eigenvalues. As noted earlier, in order to have
potentially traceable ODE solutions, maximal leading blocks
with complex eigenvalues must be accompanied by a maximal
leading block with real eigenvalue. The following example is
illustrative of the phenomenon:

B ∼
(
λ 0
0 J

)
where J =

(
λ µ
−µ λ

)
, µ 6= 0. [33]

Let u∗ be such that Bu∗ = λu∗, and let Ecx be the eigenspace
associated with the block J . We assume u∗ ∈ O+ and identify Ecx
with C. Let x0 = (x∗0 , z0) ∈ 〈u∗〉⊕Ecx be such that x∗0 > 0, and
assume |z0|/x∗0 is small enough to ensure that x(t) is potentially
traceable. For such an x0, we claim that if 1

L X (0) = x0 for L large
enough, then with high probability 1

L X (t) stays close to x(t) for
all t > 0.

We write X (t) = (X ∗(t), Z(t)), where Z(t) is the component
in Ecx, and let Y(t) = (Y∗(t),Ycx(t)) be as defined in Eq. 20.
Focusing on Z(t), we see that since z(t) = z0e(λ+iµ)t and
Ycx(t) = e−(λ+iµ)tZ(t)− Z(0), for any given η > 0,

P(∃t : |
1
L

Z(t)− z(t)| > η|z(t)|) = P(∃t : |Ycx(t)| > Lη|z0|).

Arguing as above, i.e., by Doob’s maximal inquality together with
Eq. 22, this quantity can be made small by choosing L large. This
proves Theorem 2.

To prove Theorem 3, the same martingale argument as before
tells us that for a set of sample paths of probability close to 1, i)
e−λtX ∗(t) converges a.s. to a random variable v∗ > 0, and ii)
provided that z0 6= 0, e−(λ+iµ)tZ(t) converges a.s. to a random
variable vcx 6= 0 ∈ Ecx. For these good sample paths, e−λtZ(t)
traces out a circle of radius |vcx| in Ecx as t → ∞. Projected
to S2, i and ii then imply that with high probability, e−λtX (t)

traces out a random circle if Ecx is perpendicular to u∗, a random
ellipse otherwise.

In the case of multiple maximal blocks with complex eigen-
values, projected network trajectories 8(t) converge not to a
random point but to a random manifold diffeomorphic to a D
dimensional torus, following their mean-field ODE solutions.

A complete proof of Theorems 2 and 3, which includes a
discussion of polynomial growth and multiple leading Jordan
blocks, is given in SI Appendix, S4.

H. Dynamics Following Depletion. We explain here the ideas in
the proof of Theorem 4.
Slow–fast dynamics. Given X (t) and L > 0, the process

(Y L(t), Z(t)) :=
(

1
L
5X (t), XN (t)

)
,

where5 is the orthogonal projection from RN to its first N − 1
coordinates, is a slow–fast system: we think of Y L(t) as the “slow
process" because it moves a distance O( 1

L ) with each clock ring
while Z(t) moves a distance O(1). Freezing the slow coordinate
at y, the fast dynamics are, modulo a factor of L in their clock
rates, described by the Markov process Zy(s), s ≥ 0, on N as
defined in Dynamics Following Depletion.

Theorem 4 asserts that the limiting behavior of the slow process
is governed by solutions of a specific ODE. Our first order of
business is to prove the existence and uniqueness of solutions of
this ODE. That requires controlling the regularity (in y) of the
invariant probability distributions µy of the processes Zy(s) that
comprise the fast dynamics.

Lemma 5 Every y0 ∈ D has an open neighborhood U = U (y0)
on which the following hold.

(a) There exists κ = κ(U ) and C = C(U ) so that for any y ∈ U ,
any z ∈ N, and for any t ≥ 0,∑

w∈N
|P(Zy(t) = w|Zy(0) = z)− µy(w)| ≤ CeCze−κt

(b) The functions y 7→ µy(z) are Lipschitz on U for all z ∈ N.

A proof of this lemma is given in SI Appendix, S5. In
gist, we apply a theorem of Harris to verify that Zy(s) has a
uniform spectral gap for y ∈ U . Following (21), this boils
down to showing the existence of a Lyapunov function V (in
the stochastic sense) together with a Doeblin-type condition on
the set {V < C} for some C . Checking these conditions is
straightforward. The regularity of µy, meaning the existence of
a constant C0 such that for all φ with ‖φ‖ < ∞ and for all
y1, y2 ∈ U ,

‖Py1φ − Py2φ‖ ≤ C0|y1 − y2|‖φ‖, [34]

is then deduced from the presence of a spectral gap following the
argument in ref. 22.

An immediate corollary of Lemma 5(b) is that the function

F : D→ RN−1 given by F(y) = D(y)y, [35]

where D(y) is as defined in Dynamics Following Depletion is locally
Lipschitz. The first assertion in Theorem 4, namely the existence
and uniqueness of solutions of Eq. 14, follows.
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Remark 2: We remark that Theorem 4 continues to hold
without the assumption Eq. 12. This assumption is used to
guarantee the uniqueness ofµy. If GCD = d > 1, then there are
d invariant measures µy,i, i = 0, . . . , d − 1, with µy,i supported
on dN + i. But because the sets of possible jumps from l and
l + i are the same, µy,i(l + i) = µy,0(l) for all l ∈ dN and
i = 0, . . . , d − 1. Thus, we obtain the same ODE for all
i = 0, . . . , d − 1, and the proof of Theorem 4 we give is equally
valid in this case.

Convergence of YL(t). First, we associate Y L(t) with a measure
νL on Skorokhod space. Let S := {y(t) : y(0) = y0, t ∈
[0, T ]} ⊂ D be the piece of ODE trajectory in Theorem 4, and
let d = dist(S,D). Let Dς ⊂ D denote the closure of the ςd
neighborhood of S for ς < 1, so that Dς is a compact subset of
D containing S in its interior.

For L� 1, we consider X L(t) for which

(Y L(t), ZL(t)) =
(

1
L
5X L(t), X L

N (t)
)

satisfies Y L(0) = y0 and ZL(0) = z for some fixed z ∈ N.
The superscript L is omitted when there is no ambiguity. We
introduce the following stopping time: Let t = t1 ∧ t2, where

t1 = min{t : Y (t) /∈ D1/2}, t2 = min{t : Z(t) > L1/100
},

and write

Ŷ (t) = Y (t ∧ t), Ẑ(t) = Z(t ∧ t), [36]

as well as X̂ (t) = (LŶ (t), Ẑ(t)). This stopping time ensures in
particular that cL < X̂ (t) < CL for all t ∈ [0, T ], c, C > 0
depending only on D1/2. For much of the proof, we will be
working exclusively with these stopped processes. In the interest
of notational simplicity, we will omit the “hat” in X̂ (t), Ŷ (t),
and Ẑ(t).

The process Y L(t), t ∈ [0, T ], generates a measure on the
Skorokhod space D([0, T ], RN−1) which we denote by νL. We
will show

νL
⇒ ν∞, [37]

where ν∞ is the measure on D([0, T ], RN ) supported on the
solution y(t), t ∈ [0, T ], of the initial value problem Eq. 14 and
“⇒” stands for weak convergence of measures as L→ ∞. The
theorem claims convergence of νL to ν∞ in probability, but since
ν∞ is supported on one point, weak convergence is equivalent
to convergence in probability.

A usual first step is to establish tightness.

Lemma 6 The sequence νL is tight.

A proof of Lemma 6 is given in SI Appendix, S6.
To identify the limit point, we use the martingale characteriza-

tion of Stroock and Varadhan (23, 24). In our case, this method
can be summarized as follows. Let C2

1/4(R
N−1, R) denote the

set of C2 functions on RN−1 with support on D1/4, and let
G be the operator defined by G(A)(y) = [F(y)]T∇A(y), where
F(y) = D(y)y is as defined in Eq. 35. Then,G is the infinitesimal
generator of the solution curve for Eq. 14, which we view as a
(degenerate) Markov process.

Applying the martingale characterization of Stroock and
Varadhan to this very simple process, we see that ν∞ is the
unique probability measure ν on D([0, T ], RN−1) satisfying

(i) ν(ξ : ξ(0) = y0) = 1
(ii) for all A ∈ C2

1/4(R
N−1, R), the process

M(t, ξ) = A(ξ(t))− A(y0)−
∫ t

0
(GA)(ξ(s))ds

with respect to the probability measure dν(ξ) is a martingale
on [0, T ].

To prove the weak convergence Eq. 37, then, it suffices to
verify that in the limit L → ∞, the measures νL satisfy (i) and
(ii). In our case, i obviously holds. Having established tightness,
to prove ii, it suffices to show that for all 0 ≤ t1 < ... < tl <
tl+1 < T and for all C2 test functions h1, . . . , hl ,

lim
L→∞

IL = 0, [38]

where IL is defined as∫ (
A(ξ(tl+1))− A(ξ(tl ))−

∫ tl+1

tl
(GA)(ξ(s))ds

)

∗

l∏
i=1

hi(ξ(ti)) dνL(ξ), [39]

see, e.g., ref. 25, Theorem 8.2.
The following is our main technical lemma:

Lemma 7 For any function A ∈ C2
1/4(R

N−1R), and for any ε >
0, there is a positive number R so that for any t ∈ [0, T ], there is
L0 = L0(A, ε, t) so that for all L > L0,

P(Z(t) > R) < ε

and
|E(M(Y ))| < ε,

where M(Y ) = M(Y )(t) is given by

M(Y ) = A(Y (t))− A(Y (0))−
∫ t

0
(GA)(Y (s))ds.

Proofs of Lemma 7 and Theorem 4, which follows quite readily
from Lemma 7, are given in SI Appendix. We indicate below the
main steps in the proof of the technical lemma:

1. Reduction to a local-in-time problem: Fix α = −3/4 and
t ∈ [0, T ]. We divide the interval [0, t] into subintervals
Im = [tm, tm+1], tm = mLα , m = 0, ..., tL−α − 1. Define

Mm(Y ) = A(Y (tm+1))−A(Y (tm))−
∫ tm+1

tm
(GA)(Y (s))ds,

so that

E[M(Y )] =
∑

m
E[Mm(Y )] =

∑
m

E[E[Mm(Y )|X (tm)]].

To show E[M(Y )] → 0 as L → ∞, we will prove that for
some α′ < α,∣∣E[Mm(Y )|X (tm)]

∣∣ = O(Lα
′

) as L→∞, [40]

uniformly in m and in X (tm).
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2. Approximation by a process with constant clock rates: Recall
that for X (t), the clock rate for reaction k, k = 1, ..., K is
αkXEk(t). We wish to approximate X (t) with a process X ′(t)
with the properties that X ′(tm) = X (tm), and the clock rates
for X ′(t) are constant on each Im. If, e.g., we set the clock
rates for X ′(t) to be

rk =
{
αk(XEk(tm)− L1.1+α) if Ek = 1, ..., N − 1
0 if Ek = N,

on Im, then it can be shown that with probability close to 1,
X ′(t) = X (t) ∀t ∈ Im.

3. Completing the proof: Continuing to work with one Im at
a time and defining Y ′(t) and Mm(Y ′) analogously to Y (t)
and Mm(Y ), one deduces from the proof of Item 2 that∣∣E[Mm(Y )|X (tm)]− E[Mm(Y ′)|X (tm)]

∣∣
is very small, so the problem is reduced to estimating
E[Mm(Y ′)|Xtm ]. Observe first that by Lemma 5(a), Z(s)
converges very quickly to its invariant distribution, so that
assuming Z(tm) is distributed according to this distribution
(instead of Z(tm) = z for some z) incurs only a negligible
error. Assuming that, the result follows from a few fairly
straightforward approximations.

Discussion

In the context of linear stochastic reaction networks, Theorems 2
and 3 in this paper can be seen as a generalization of the results in
ref. 17, which imposed a global condition of Perron–Frobenius
type on the mean-field ODE system to ensure that all rescaled
solutions converge to a single attractive fixed point. We replaced
this global condition with a local one, namely the potential
traceability of the ODE solution. This enabled us to remove all
assumptions on the linear network while limiting the applicability
of our results to suitable initial conditions. Another related result
is (14), which treated stochastic tracing for a finite time under
general conditions. We extended the tracing to infinite time for
our networks, taking advantage of the simplicity of the ω-limit
sets for the rescaled ODEs.

All this can be seen as preparation for dealing with nonlinear
reaction networks, where linearized solutions of (nonlinear)
ODEs replace the linear system considered here. Overcoming
the effects of nonlinearities and the time-dependent nature of
the linearized ODE, one could hope for similar results under
appropriate conditions on large-time behaviors.

Scalable reaction networks provide a suitable framework for
this generalization; see ref. 10. To leverage existing ergodic
theory to study large-time dynamics of biological networks, one

is confronted immediately with the following issue: biological
entities grow, while mathematical theories tend to require some
form of stationarity; sustained growth of biomass and stationarity
seem to be at odds with one another. Scalable networks permit
us to get around that. Roughly speaking, these are networks
for which the time evolution of ‖X (t)‖ can be decoupled
from the dynamics of proportions among the substances present.
Mathematically, this translates into the fact that the mean-
field ODE on RN projects to a well-defined flow on SN−1.
Existing dynamical systems theory such as heteroclinic behavior
can then be applied, in principle, to the projected flow, as can
smooth ergodic theory tools such as Lyapunov exponents, and
the resulting phenomena can, in principle, be translated into
stochastic network behavior assuming the exponential growth of
‖X (t)‖. We qualified our statements above with an “in principle”
because we do not know what types of dynamics are natural
for scalable reaction networks. That is another question to be
explored.

In a different direction, Theorem 4 of the present paper
touches upon a topic that we believe deserves greater attention
than it has received: dynamics following depletion of one of
the substances. For reaction networks, depletion is a natural
phenomenon, possibly one of the most natural bifurcations, or
“phase transitions.” We treated only the finite-time problem, but
with deviations from the mean-field equation dying out quickly,
it is likely that one can extend the mean-field approximation,
leading possibly to descriptions of what may typically happen
next. More ambitious are conditions for scenarios such as
eventual replenishment of the depleted substance, recurring
depletions, and cascading failures. Though not new to general
networks theory, these phenomena have not been systematically,
analytically, explored in the context of reaction networks.

Finally, there are many examples of reaction networks that,
with varying degrees of realism, depict real-world situations. A
number of such networks are mentioned in the Introduction.
Applications of a rigorous mathematical theory to these examples
could be valuable.

Methods

Main ideas of the proofs are explained above, and technical proofs are given in
SI Appendix.
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