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STATISTICAL PROPERTIES OF TYPE D DISPERSING

BILLIARDS

MARGARET BROWN AND PÉTER NÁNDORI

Abstract. We consider dispersing billiard tables whose boundary is piece-
wise smooth and the free flight function is unbounded. We also assume there
are no cusps. Such billiard tables are called type D in the monograph of
Chernov and Markarian [9]. For a class of non-degenerate type D dispers-
ing billiards, we prove exponential decay of correlation and several other
statistical properties.

1. Introduction

Consider a collection of disjoint open sets on the torus T2 = R
2/Z2 (called

scatterers in the sequel) with piecewise C3 boundary which are locally convex
with bounded from below curvature at regular points. We assume that there
are no cusps. To define the Sinai billiard flow [16], let a point particle fly freely
with constant speed on the complement of the scatterers (called the billiard
table) and be subject to elastic collision upon reaching their boundaries. De-
pending on the geometry of the scatterers, the free flight time may or may not
be bounded. A partial classification of dispersing billiard tables is given by [9]
as follows: assume first that the boundary of the billiard table is C3. If the free
flight is bounded, then the table is of type A, otherwise of type B. Now assume
that the boundary of the billiard table is only piecewise C3. Points where the
boundary is C3 are called regular. The finitely many non-regular points are
called corner points. If the free flight is bounded, then the table is of type C,
otherwise of type D. (In case of cusps, type E and F.) Statistical properties
were first proven for type A billiards (see the central limit theorem in [3–5],
exponential decay of correlations [18]). Next, type B tables were also exten-
sively studied (see [2, 7, 17]). Although there are early works for types C and
D [5], the more recent theory (such as the construction of Young towers [18])
was not studied in these classes until recently. For type C billiard tables, [11]
proves the m-step expansion estimate, which together with other estimates
(that can be proved as in type A) yield the statistical properties mentioned
above. There are fewer results available in types D-F (in fact, these classes
are labelled as ”hard” in [9])

It is standard that long free flights are only possible after a collision in a small
vicinity of finitely many points, which we call boundary points of corridors.
We now distinguish two classes of type D billiard tables: if all boundary points
of corridors are regular, we say that the billiard table is of type D1, otherwise
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of type D2. The main result of the present work can be informally stated as
follows.

Theorem 1. Consider a billiard table of type D1 or type D2, in which case
we also require that assumptions (A1) and (A2) hold. Then the correlation
of bounded dynamically Hölder observables decay exponentially fast and the
central limit theorem holds for such observables.

The precise definitions are given in Section 2. We note that some conditional
results are available in the literaure, see e.g. the condition on complexity
in [4]. Up to our best knowledge that condition on complexity is not known to
hold generically and in fact is not verified for any specific billiard table. Our
conditions (A1), (A2) hold on an open and dense set of billiard tables and
furthermore given any billiard table it is easy to check whether they hold as
they only depend on the boundary points of the corridors.
The rest of this paper is organized as follows. In Section 2 we collect the

necessary background information needed in this work. None of the results
of Section 2 are new. In Section 3 we state our main technical theorems.
Theorem 2 implies Theorem 1 in type D1. Theorem 3 implies Theorem 1 in
type D2. Section 4 contains the proof of Theorem 2. Section 5 contains the
proof of Theorem 3. This proof is substantially more complex then that of
Theorem 2 as we need a careful study of the geometry of long free flights in
case of type D2 configurations. The proof of an important lemma is postponed
to Section 6. In Section 7, we prove that the conditions (A1), (A2) hold on an
open and dense set of billiard tables.
We mention that very recently there has been an increasing interest in the

detailed description of possible orbits in infinite corridors in cases of hyperbolic
billiards [1, 13] and in some similar hyperbolic systems with singularities [12].

2. Preliminaries

Here we review the preliminaries needed for our work. All results in this
section are known, see [6, 8, 9]. More specific references will be given for the
most important statements.

2.1. Billiards of type D. Let T2 be the 2-torus and D ⊂ T
2 be a dispersing

billiard table. That is, the complement of D consists of finitely many (say d)
connected components Bi (called scatterers). For convenience we also label
the scatterers. Each scatterer i = 1, ..., d is bounded by a finite union of
curves Γi,j, j = 1, ..., Ji. It is assumed that Γi,j is a C3 curve, that is there
is a C3 function fi,j : [0, 1] → T

2 which is a bijection between [0, 1] and Γi,j .
Furthermore, fi,j(1) = fi,j+1(0) where j + 1 is interpreted modulo Ji (that
is, fi,Ji(1) = fi,1(0)). The endpoints of Γi,j are called corner points, all other
points of Γi,j are regular points. We require that one of the first three one-
sided derivatives at fi,Ji(1) differ from the corresponding derivative at fi,1(0),
that is no regular point is labelled as corner point. We also require that the



STATISTICAL PROPERTIES OF TYPE D DISPERSING BILLIARDS 3

Figure 1. A scatterer with a convex corner point (left) and a
concave corner point (right)

curvature of Γi,j is positive with uniform upper and lower bounds at all regular
points. The orientation of Γi,j is assumed to be so that when following Γi,1,
Γi,2, ..., Γi,Ji, we follow clockwise orientation and D is to the left hand side.
The region enclosed by Γi,1, ...,Γi,Ji (a subset of T2 \D) is one scatterer. If the
boundary of the scatterer i is C3 smooth, i.e. does not contain corner points,
then the scatterer is necessarily strictly convex and Ji = 1. We also assume no
cusps, that is the tangent lines of Γi,j and Γi,j+1 have an angle of at least α0

at their common endpoint fi,j(1). The interiors of Γi,j are disjoint for all i, j.
Furthermore, at each corner point exactly two curves meet and their angle is
bounded from below by some positive constant. Any billiard table satisfying
these assumptions is called admissible.

Given a corner point, let γ be the angle between the two half tangent lines
at it, measured at the interior of D. The admissible property implies that
γ 6= 0 for all corner points (the case γ = 0 is called a cusp). We say that the
corner point is convex if 0 < γ ≤ π. Note that γ = π is possible, in this case
we assume that either the second or the third derivatives on the two sides of
the corner points differ. We say that the corner point is concave if π < γ < 2π
(noting that γ = 2π is impossible due to local convexity of the scatterers at
regular points). See Figure 1.

Given two admissible billiard tables D1,D2 with the same combinatorial
data (that is the same number of scatterers d and the same number of smooth
pieces Ji, i = 1, .., d), we define their distance as

d(D1,D2) = inf
{f1},{f2}

max
i,j

dC3(f 1
i,j, f

2
i,j),

where the infimum is taken over admissible parametrizations, i.e. collections of
C3 functions fk

i,j so that fk
i,j is a bijection between [0, 1] and Γk

i,j where k = 1, 2
indicates the two billiard tables. This makes the set of labelled admissible
billiard tables with given combinatorial data a metric space Dd,J1,...,Jd. Let
D denote the space of all (labelled) admissible billiard tables, that is D =
∪d,J1,...,JdDd,J1,...,Jd. The space D is also a metric space by defining the distance
between two tables of different combinatorial data to be infinite (mind the
labelling).

The billiard dynamics on a fixed admissible billiard table D prescribes the
motion of a point particle that flies with constant speed 1 in a given direction
v until it reaches the boundary ∂D, where it undergoes an elastic collision
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(meaning the angle of reflection equals the angle of incidence). The phase
space of the billiard flow is Ω = D × S1/ ∼, where ∼ means identifying pre-
collisional and post-collisional data (that is, if q ∈ ∂D is a regular point, then
v and −v are identified unless v is tangent to ∂D at q. We will discuss the
case of corner points in more detail later). We use the notation (q, v) ∈ Ω
with v being the velocity vector. We say that D is the configuration space and
q = ΠD(q, v) is the configurational component of (q, v). The billiard flow is
denoted by Φt : Ω 7→ Ω for every t ∈ R.
Note that the dynamics may not be well defined upon reaching a corner

point. Such trajectories have Lebesgue measure zero, so the definition of Φ on
this set is irrelevant for physical properties. It is convenient, though, to define
the flow to be possibly multi-valued upon reaching a corner point, correspond-
ing to possible limit points of nearby regular orbits. One way of defining the
flow is as follows. First, we say that a collision is improper if the trajectory can
be approximated by trajectories missing the collision. In the case of smooth
scatterers, an improper collision is the same as a grazing collision. In the case
of a concave corner point, we may have an improper collision which is not
grazing (such as a horizontal flight touching the corner point on the right of
Figure 1). A proper collision is a collision that is not improper. For example, a
vertical flight hitting the corner on the right of Figure 1 is proper, and nearby
regular trajectories have two possible continuations. All trajectories hitting a
convex corner point are proper. Furthermore, we may have a sequence of short
flights near the convex corner point (also known as corner sequence), but the
number of short collisions (the length of the corner sequence) is bounded due
to the assumption that there are no cusps (see [6, Section 9]). Now given a
point (q, v), put τ(q, v) = inf{t > 0 : ΠDΦ

t(q, v) ∈ ∂D}. Now assuming that
limtրτ(q,v) ΠDΦ

t(q, v) is a corner point q̃ ∈ ∂D, we define Φτ(q,v)(q, v) as

lim
εց0

lim
q′→q,v′→v

Φτ(q,v)+ε(q′, v′)

where q′, v′ are points that can only experience collisions at regular points
up to time τ(q, v) + ε and the second limit is to be interpreted as the set
of all possible limit points. With this definition, Φτ(q,v)(q, v) can take one or
two values. This is trivial in case of concave corner points; for convex points
see [9, Section 2.8]. The flow Φt preserves the Lebesgue measure ν on Ω (we
assume by normalization that ν is a probability measure).
We will also study the billiard map. Let M be a cross-section of post-

collisional points. Then M can be identified with a union of cylinders and
rectangles. For any curve Γi,j, we define Mi,j = [ai,j, bi,j]× [−π/2, π/2] where
bi,j − ai,j = |Γi,j| and the intervals [ai,j, bi,j] are disjoint. If the scatterer i
is smooth (in this case necessarily Ji = 1), then we identify the endpoints
of the interval [ai,1, bi,1], so Mi,1 becomes a cylinder. Finally, we put M =
∪i,jMi,j. Coordinates in M are denoted by (r, ϕ): r is arclength parameter
along the boundary of the scatterer in clockwise direction; ϕ is the angle of the
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postcollisional velocity and the normal to D at q pointing into D. The angle ϕ
is also measured in the clockwise direction with ϕ ∈ [−π/2, π/2] (see [9, Figure
2.14]). The billiard map is denoted by F : M → M. It preserves the physical
invariant measure µ defined by dµ = Cµ cosϕdrdϕ, where Cµ is a normalizing
constant (µ is obtained as the projection of ν to the Poincaré section). The
flow is now a suspension over the base map F with roof function τ , which is
the free flight time. Note that F can be multivalued at points when the next
collision is at a corner point. The special case of unbounded free flight near a
corner point will be discussed in the next section.

For ease of notation, we will identify M with a subset of Ω in the natural
way. For example, we will write ΠDx for x ∈ M.

2.2. Structure of corridors. Next we study corridors. We say that an ad-
missible billiard table has infinite horizon if the free flight is unbounded. In
this case, there are finitely many ”corridors”. A corridor H by definition is
a direction v = vH ∈ [0, π) and a connected subset QH of D with non-empty
interior

(1) QH = {q ∈ D : ∀t ∈ R : q + tv ∈ D}.
There are only finitely many corridors (see [9, Exercise 4.51]). Let us say that
an admissible billiard table is of type D1 if all corridors are bounded by grazing
orbits at regular points (such orbits are necessarily periodic). In other words,
a billiard table is regular if no corner point is in the corridors. If the billiard
table is of type D but not of type D1, then we call it type D2. We say that
an admissible billiard table is simple if for all corridors H , BH := ∂QH ∩ ∂D
consist of exactly 2 points, one on both sides of QH , that is BH = {qH,l, qH,r}.
Here, l and r stand for left and right points, when viewed from the direction v.
For simple billiard tables, we consider the four points in M, whose trajectory
up to the next collision projects onto ∂QH in the configuration space. The set
of these four points is denoted by

(2) AH = {(rH,l,1, ϕH,l,1), (rH,l,2, ϕH,l,2), (rH,r,1, ϕH,r,1), (rH,r,2, ϕH,r,2)}.
We will say that the elements of AH are boundary points of the corridor H .
Note that if qH,s is a regular point (for s = l, r), then rH,s,1 = rH,s,2 corresponds
to a vertical line segment in the interior of Mi,j. On the other hand, if qH,l

is a corner point, then rH,l,1 corresponds to the right side of Mi,j and rH,l,2

corresponds to the left side of Mi,j+1 (and vice versa for the right boundary:
if qH,r is a corner point, then rH,r,2 corresponds to the right side of Mi′,j′ and
rH,r,1 corresponds to the left side of Mi′,j′+1). In this case and with a slight
abuse of notation, we will also say that the elements of AH are corner points.
Note that whenever qH,s is a corner point, it is necessarily concave. See Figure
2 for a typical arrangement in the case that both sides are bounded by a
corner point (for simplicity, we depict i = j = j′ = 1, i′ = 2, v is horizontal,
so by convention pointing to the right). The figure represents a part of the
scatterer configuration lifted from T

2 to R
2. The point qH,r = Γ1,1∩Γ1,2 is the
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ϕH,r,1 ϕH,r,2

ϕH,l,1 ϕH,l,2

Γ1,2Γ1,1 Γ1,2Γ1,1

Γ2,1Γ2,2 Γ2,1Γ2,2 Γ2,1Γ2,2

v

Figure 2. A simple corridor bounded by two corner points

corner point on the bottom left as well as the bottom right of the figure. The
two corresponding signed angles ϕH,r,k, k = 1, 2 are between the dashed lines
(normals to the curves) and the lower dotted line. Similarly, observe the left
boudary of the corridor on the top part of the figure. In this paricular case,
we have ϕH,r,1 > 0, ϕH,r,2 < 0, ϕH,l,1 < 0, ϕH,l,2 > 0 although these signs may
be different for other corridors bounded by two corner points. Note that

(3) F (rH,r,1, ϕH,r,1) = (rH,r,2,−ϕH,r,2)

which corresponds to an improper collision. According to our definition,
Φτ(rH,r,1,ϕH,r,1)(rH,r,1, ϕH,r,1) takes two values: (rH,r,2,−ϕH,r,2) and (rH,r,1, ϕH,r,1)
(where we identified M with a subset of Ω). This corresponds to an improper
collision and so by our terminology (3) holds. There are two possible types
of free flights from regular points close to (rH,r,1, ϕH,r,1). One possibility is a
flight of bounded length, terminating on Γ1,1. For such points (q, v), F (q, v)
is close to (rH,r,2,−ϕH,r,2). The other possibility is a very long flight in the
corridor which eventually terminates on Γ2,2. For such points (q, v), F (q, v)
is close to (rH,l,2,−ϕH,l,2). The local geometry of such orbits will be studied
more carefully later.
Now we define A = ∪H corridorsAH . With these notations, we are ready to

introduce our assumptions

(A1) D is simple.
(A2) For any (r, ϕ) ∈ A, if r corresponds to a corner point, then |ϕ| 6= π/2.

It seems likely that our results remain true if we remove (A1) and (A2) but
the proof becomes more complicated so we assume them for convenience.

2.3. Definitions. We will denote by C any constant only depending on D,
whose explicit value is irrelevant. In particular, the value of C may change
from line to line.
The billiard map F is hyperbolic and ergodic. In particular, there exists

uniformly transversal families of stable and unstable cones. Specifically, there
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are cones Cu/s
x for every x ∈ M so that DxF (Cu

x) ⊂ F (Cu
F (x)) ∪ {0} and

DxF
−1(Cs

x) ⊂ F (Cs
F−1(x)) ∪ {0}. Furthermore, there is a positive number a

so that for any x ∈ M and any (dr1, dϕ1) ∈ Cu
x , (dr2, dϕ2) ∈ Cs

x, we have
a ≤ dϕ1/dr1 and dϕ2/dr2 ≤ −a. Furthermore, at least one of the following
two inequalities hold: dϕ1/dr1 ≤ a−1, −a−1 ≤ dϕ2/dr2 (see [6, Section 9].
We note that all of these inequalities hold when there are no corner points.)
Vectors in Cu

x (Cs
x) are called unstable (stable). It follows that the exists some

number γ > 0 so that at any point x ∈ M, the angle between any stable and
unstable vector is bounded from below by γ and no horizontal vector (that is
dϕ = 0) can be in the stable/unstable cones. The standard way of defining
the stable/unstable cones is as the DF/DF−1 image of the cones drdϕ ≥ 0.
We will briefly refer to these properties as transversality.

Hyperbolicity needs to be understood in the sense that for almost every point
there is an unstable and a stable manifold through this point, however they
can be arbitrarily short. This is due to the singularities. The hyperbolicity is
uniform in the sense that there are constants C# and Λ∗ > 1 so that for any
n ≥ 1, for every unstable vector u,

(4) ‖DF n(u)‖ ≥ C#Λ
n
∗‖u‖

and for any stable vector v,

‖DF−n(v)‖ ≥ C#Λ
n
∗‖v‖.

Let us write

S0 = ∪i,jΓi,j × {±π/2}, V0 = ∪i ∪j ∂Γi,j × [π/2, π/2],

that is S0 is the set of grazing collisions and V0 is the set of collisions at the
corner points, and R0 = S0 ∪ V0. Furthermore, let Rm,n = ∪n

l=mF
lR0. Then

for any n ≥ 1 (including n = ∞), the singularity set of F n is R−n,0 and the
singularity set of F−n is R0,n. Furthermore, as usual, we introduce secondary
(artificial) singularities

Ŝ±k = {(r, φ) : φ = ±π/2∓ k−2}
for some k ≥ k0 to control distortion. We denote

H0 = {r, ϕ ∈ M : −π/2− k−2
0 ≤ ϕ ≤ π/2− k−2

0 }
Hk = {r, ϕ ∈ M : π/2− k−2 ≤ ϕ ≤ π/2− (k + 1)−2}

H−k = {r, ϕ ∈ M : −π/2 + (k + 1)−2 ≤ ϕ ≤ −π/2 + k−2}.
The extended set of singularities is

RH

0 = SH

0 ∪ V0, where SH

0 = S0 ∪ (∪k≥k0Ŝ±k)

and likewise RH

n,m = ∪n
l=mF

lRH

0 . We say that a C2 curve inW ⊂ M is unstable
if at every point x ∈ W , the tangent line TxW is in the unstable cone, and W
has a uniformly bounded curvature and is disjoint to R0 (except possibly for
its endpoints). We say that an unstable curve is homogeneous if it lies entirely
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in Hk for some k (k = 0 or |k| ≥ k0). It is useful to think about unstable
curves as smooth curves in the northeast-southwest direction on M.
As in [8, section 4], we say that ℓ = (W, ρ) is a standard pair if W is a

homogeneous unstable curve and ρ is a probability measure supported on W
that satisfies

∣

∣

∣

∣

log
dρ

dLeb
(x)− log

dρ

dLeb
(y)

∣

∣

∣

∣

≤ C0
|W (x, y)|
|W |2/3 .

Note that there is some constant C so that for any standard pair ℓ = (W, ρ)
and for any x, x′ ∈ W

(5) e−C|W |1/3 ≤ ρ(x)

ρ(x′)
≤ eC|W |1/3.

The image of a standard pair is a weighted average of standard pairs. More
precisely, if ℓ = (W, ρ) is a standard pair and νℓ is the measure on W with
density ρ, then F (W ) = ∪iWi, whereWi are homogeneous unstable curves and
F∗(νℓ) =

∑

i ciνℓi , where ℓi = (Wi, ρi) are standard pairs (see [8, Proposition
4.9 ]). We will also write F∗(ℓ) =

∑

i ciℓi.
Substandard families are weighted averages of standard pairs where the sum

of the weights is ≤ 1. That is, G = ((Wα, ρα)α∈A, λ) is a substandard family
if (Wα, ρα)’s are standard pairs and λ is a subprobability measure on A. We
assume that the Wα’s are disjoint. Given a substandard family G, it induces
a measure νG on M by

νG(B) =

∫

α∈A

να(B ∩Wα)dλ(α) for B ⊂ M Borel sets,

where να is the measure on Wα with density ρα. In case λG is a probability
measure, we call G a standard family. Now given a point x ∈ Wα, denote by
rG(x) the distance between x and the closest endpoint of Wα (measured along
Wα with respect to arclength). We introduce the notion of the Zq function for
q ∈ (0, 1] by

Zq(G) = sup
ε>0

νG(rG < ε)

εq
.

For example if G consists of only one standard pair (W, ρ), then

(6) Zq(G) ∼ 2q/|W |q

as |W | → 0. A fundamental fact about the class of standard families is that
they are preserved under iterations of the map F .
Given a homogeneous unstable curve W , its image Fm(W ) will consist of

a collection of homogeneous unstable curves Wi. For each i, let Λi = Λi,m

be the minimal expansion factor of Fm on F−mWi. We say that the m-step
expansion holds if

lim
δ→0

sup
W :|W |<δ

∑

i

1

Λi,m
< 1,
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where the supremum is taken over homogeneous unstable curves. We note
that the above limit is traditionally written as lim inf, however the sequence
as δ → 0 is non-increasing and bounded below, so the limit always exists.

For given n, let ξn be the partition of M\RH

0,n into connected components.
Now the forward separation time of points x, y ∈ M, denoted by s+(x, y), is
defined as the smallest n so that x and y belong to different partition elements
of ξn. Likewise, we define s−(x, y) as the backward separation time. We say
that f : M → R is dynamically Hölder if there are constants C = C(f) and
ϑ = ϑ(f) < 1 so that for any x, y on the same unstable manifold W u,

|f(x)− f(y)| ≤ Cϑs+(x,y)

and for any x, y on the same stable manifold W s,

|f(x)− f(y)| ≤ Cϑs−(x,y).

We will write an ∼ bn if limn→∞ an/bn = 1 and an ≈ bn if there are is a
constant C so that 1/C ≤ an/bn ≤ C for all n.

3. Results

Now we can state our results.

Theorem 2. For all type D1 billiard tables there is some m0 so that the m0-
step expansion holds.

Theorem 3. For all type D2 billiard tables satisfying (A1) and (A2) and for all
q ∈ (0, 1) we have the following. There are constantsM ∈ N, κ < 1 and δ0 > 0
so that for any standard pair ℓ = (W, ρ) with |W | < δ0, Zq(F

M
∗ (ℓ)) < κZq(ℓ).

Theorem 4. The set of billiard tables satisfying (A1) and (A2) is open and
dense in D.

Proof of Theorem 1 assuming Theorems 2, 3. In the case of type D1 billiard
tables, the key estimate is the m0-step expansion, provided by Theorem 2.
Once it is established, the exponential decay of correlations and the central
limit theorem follow from the theory developed in [6] as it was also noted in
case of type C billiards in [11].

In the case when the assumptions (A1) and (A2) are satisfied, the result
follows from [10]. In that work, the exponential decay of correlation follows
from some abstract assumptions denoted by (H1) - (H5). In our case, assump-
tions (H1)-(H4) are standard as is usual for billiards (see e.g. [6, section 9]).
We do not know how to prove (H5) (see Remark 8 below) however we have
Theorem 3 instead. In the proof of [10], (H5) is only used to derive the growth
lemma (see [10, Lemma 3(a)]) which is standard once our Theorem 3 holds.
That being said, we can replace (H5) by Theorem 3 and conclude the result
of Theorem 1. �
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Remark 5. Under the same assumptions as Theorm 1, several other results
follow immediately from the abstract theory. Indeed, a ”magnet” is constructed
in [10] which implies the existence of a Young tower [18] with exponential
return times. Thus the central limit theorem [18], large deviation principles
[15], almost sure invariance principle, law of iterated logarithm [7, 14], etc.
follow.

Remark 6. It is important to note that the test functions in the setup of
Theorem 1 and Remark 5 are assumed to be bounded and dynamically Hölder.
Important functions of interest are the free flight time τ : M → R and the
displacement vector κ : M → R

2 defined as ΠD(F (x)) − ΠD(x), lifted to the
universal cover R

2. Both of these functions are dynamically Hölder but un-
bounded. In particular, we do not claim the central limit theorem for the posi-
tion of the billiard particle in the periodic extension of D from T

2 to R
2 (also

known as Lorentz gas). In fact, we expect that the this position will converge
to the normal distribution under the scaling

√
t log t (where t is continuous

time in case the flow is considered, and collision time in case of the map) as
in [17], but we do not study this question here.

4. Proof of Theorem 2

The proof of Theorem 2 is based on similar proofs for type C as in [11] and
type B as in [9]. As such, we only give detailed arguments at places where our
proof differs from these references and otherwise cite the necessary lemmas
from [9, 11].
First we review the structure of corridors and singularities, see [9, Section

4.10] for details. Let us fix a regular billiard table. There are finitely many
points,

A = {xh = (rh, ϕh), h = 1, ..., hmax, ϕh = ±π/2}
that are periodic and whose trajectories bound the corridors. The singularity
structure of F and F−1 near xh is as follows. There are infinitely many singu-
larity curves accumulating at xh. Specifically, there are connected components
D+

h,n for n ≥ 1 in a neighborhood of xh so that F is smooth on D+
h,n and the

trajectories of the points in D+
h,n pass by n copies of the given scatterer be-

fore the next collision. Likewise, D−
h,n is a set on which F−1 is continuous,

and F (D+
h,n) = D−

h′,n for some h′. The size of D+
h,n is ≈ n−2 in the unstable

direction and ≈ n−1/2 in the stable direction. Likewise, the size of D−
h,n is

≈ n−1/2 in the unstable direction and ≈ n−2 in the stable direction. Conse-
quently, D−

h,n intersects with Hk if |k| ≥ Cn1/4. The rate of expansion of F on

D+
h,n ∩ F−1(Hk) is ≈ nk2.
We start by the following
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Lemma 1. There is a constant C so that for any unstable curve W and for
any homogeneous connected component W ′ ⊂ F (W ), we have

|W ′| ≤ C|W |1/3.
Proof. Let N be an arbitrary positive integer. If W 6⊂ ∪h ∪n≥N D

+
h,n, then the

stronger bound |W ′| ≤ C|W |1/2 holds with C = C(N) by [9, Exercise 4.50].
Let us assume now that W ⊂ ∪n≥ND

+
h,n. We can also assume that there is

some n so that W ⊂ D+
h,n. Indeed, for any connected component W ′ ⊂ F (W ),

by connectedness, there is some n = nW ′ so that F−1(W ′) ⊂ D+
h,n. Restricting

W to D+
h,nW ′

will decrease the length of W but not change the length of W ′.

Thus it is enough to prove the lemma when W is replaced by W ∩D+
h,nW ′

.

Since W ′ is a homogeneous unstable curve, there is some k so that W ′ ⊂
H±k. We can also assume that F (W ) =W ′. Indeed, if W ′ ⊂ F (W ), the proof
is easier as |F (W )| ≥ |W ′|. By the discussion right before the lemma, we have
|W ′|/|W | ≈ nk2. Now extend W smoothly to a longer unstable curve W̄ so
that W̄ ′ = F (W̄ ) is maximal with W̄ ′ ⊂ H±k, i.e. the two endpoints of W̄ ′

belong to ∂H±k. Then |W̄ ′|/|W̄ | ≈ |W ′|/|W | ≈ nk2. Recalling that |k| > n1/4,
we find |W̄ ′| ≤ C|W̄ |k6. Next, by transversality, we have |W̄ ′| ≈ |k|−3 and so
|W̄ ′| ≤ C|W̄ |1/3. We conclude

|W ′| ≤ C|W | |W̄
′|

|W̄ | ≤ C|W ||W̄ |−2/3 ≤ C|W |1/3.

�

Remark 7. In the case of finite horizon if we do not require W ′ to be homo-
geneous, we have |W ′| ≤ |W |1/2 by [9, Exercise 4.50]. Similarly to the above
proof, one can show that in case of finite horizon and if W ′ is required to
be homogeneous, then |W ′| ≤ |W |3/5 holds. Furthermore, in the case of infi-
nite horizon if W ′ is not required to be homogeneous, then the weaker bound
|W ′| ≤ |W |1/4 holds. Since we will not use these bounds, the proofs are omitted.

We will also need an estimate on the growth of the free flight function along
orbits, which is provided by the next lemma.

Lemma 2. There are constants C1, t0, t1 only depending on D so that for any
point x ∈ M with τ(x) > t1, there are two possibilities:

• either τ(F (x)) ∈ [C−1
1

√

τ(x), C1(τ(x))
2]

• or τ(F (x)) < t0 in which case τ(F 2(x)) ∈ [C−1
1

√

τ(x), C1(τ(x))
2].

We don’t give a formal proof of Lemma 2, as the first case was proved in [17,
Proposition 9] and the second case is similar. Instead, we give an explanation.
A long flight needs to happen in a corridor, e.g. in the northeast direction
in a horizontal corridor with an angle α ≈ 1/τ(x). Now let P, P ′ ∈ ∂D be
two consecutive points on the boundary of the corridor (see Figure 3) with
P ∈ ∂B, P ′ ∈ ∂B′ (here B = Bi + m and B′ = Bi + m′ for some i = 1, ..., d
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PQ' P'

Figure 3. Collisions after a long flight

and m,m′ ∈ Z
2). The free flight of x will intersect the line segment (P, P ′).

Let Q,Q′ be two more points on this line segment with P < Q < Q′ < P ′,
where X < Y means that Y is to the right of X . Here Q′ is defined so that
the line segment with angle α through Q′ is tangent to B and Q is defined
by the property that a billiard particle travelling with angle α through Q first
collides with B and then experiences a grazing collision on B′.
Let R denote the point where the free flight, starting from x, crosses (P, P ′).

If P ≤ R < Q, then τ(F (x)) ∈ [τ(x), C1(τ(x))
2]. If Q ≤ R ≤ Q′, then

τ(F (x)) < ‖m′ −m‖ and τ(F 2(x)) ∈ [C−1
1

√

τ(x), C1(τ(x))
2]. Finally, if Q′ <

R < P ′, then τ(F (x)) ∈ [C−1
1

√

τ(x), τ(x)). Also note that the last case is the
typical one in the sense that ‖P −Q′‖ ≈ 1/τ(x).
Figure 3 represents the two cases of Lemma 2. The dashed line is a reference

trajectory through Q′. The solid line is a trajectory with Q′ < R < P ′ and
the dash-dotted line is a trajectory with Q < R < Q′. (Note that for the sake
of legibility, this image doesn’t exactly reflect how small the angles would be.)

Now fix some ε0 > 0, n0 and τ̄ so that the following is true: For any point
x = (r, ϕ) ∈ M that has a free flight longer than τ̄ , there is some h = 1, ..., hmax

so that d(x, xh) < ε0 and x ∈ D+
h,n for some n ≥ n0. Furthermore, the

trajectory of x under the billiard flow until the next collision avoids the ε0
neighborhood of all corner points in T

2.
Let us write Mn = M \ ∪hmax

h=1 ∪n≥n D
+
h,n and Mm,n = ∩m

l=0F
−lMn. Note

that for m fixed and for n large enough, we have

(7) M(ĉn)1/(2
m) ⊂ Mm,n ⊂ Mn.

Indeed, the first inequality follows from Lemma 2 and the second one is trivial.
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Following [11], we introduce the following definitions. LetW be a homogene-
nous unstable curve and Wi,m the homogeneous components (H-components)
of Fm(W ). We say thatWi,m is m-regular if F−l(Wl,m) ∈ H0 for all 0 ≤ l < m.
If Wi,m is not m-regular, it is called m-nearly grazing.

Given some n, m and z ∈ Mm,n, we define Kreg
m,n(z) as the number of con-

nected components of M′ ⊂ Mn \ RH

0,m so that the closure of M′ contains z
and some (and consequently all) points x ∈ M′ satisfy

(8) F l(z) ∈ Ĥ0 for all l = 0, ..., m,

where
Ĥ0 := H0 ∪Hk0 ∪H−k0 .

Let
Kreg

m = sup
n≥1

sup
z∈Mm,n

Kreg
m,n(z)

Now we have

Lemma 3. There is some Ξ depending only on D (and in particular not
depending on k0) so that

Kreg
m = sup

n≥1
sup
z∈Mn

Kreg
m,n(z) ≤ Ξ(m+ 1)

Proof. By (7), the first equality follows. The inequality follows from [11,
Lemma 3.5]. Although that lemma is only proved in the case of finite horizon,
the proof applies in our case as well. Let us fix n0 = max{n0, Ck

4
0}. Then the

proof of [11] implies supz∈Mn0
Kreg

m,n0
(z) ≤ Ξ(m + 1). We just need to replace

τmax by τ̄ in Lemma 3.6; in particular Ξ = 4τ̄ /τ∗ + 6 works, where τ∗ is the
length of the minimal free flight between two improper collisions (a geometric
constant only depending on D). Indeed, whenever τ(x) > τ̄ (this can happen
if n > n0), the trajectory up to the next collision avoids the ε0 neighborhood
of the corner points by the choice of n0, so Lemma 3.6 remains valid. Now if
n > n0, then by the choice of n0 and by Lemma 2, all points z ∈ Mm,n \Mm,n0

satisfy F (z) ∈ Hk for some k with |k| > k0. Thus Kreg
m,n(z) = 0.

�

Let k0 be fixed and letKreg
m (W ) denote the number ofm-regular H-components

of Fm(W ). Then we have

Lemma 4. There exists some m0 only depending on D so that for any k0,

lim
δ→0

sup
W :|W |<δ

Kreg
m0

(W ) <
1

3
C#Λ

m0
∗

where C# and Λ∗ are defined by (4).

Proof. This lemma is proved as [11, Lemma 2.12]. We fix m0 so that Ξ(m0 +
1) < 1

3
C#Λ

m0
∗ . Now since k0 is fixed, we can choose n1 > max{n0, k

4
0}. Then as

in Lemma 3, if z /∈ Mm0,n1, then F (z) ∈ Hk for |k| > k0, so the H-component
W ′ ⊂ Fm0(W ) containing Fm0(z) must bem0-nearly grazing. Once n1 is fixed,
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there are only finitely many points Z = {z1, ..., zZ} where Kreg
m0,n1

(z) > 2. By
choosing δ = δ(n1) small, we can assume that our curve W is only close to

one of these points and so by transversality and by the fact that we used Ĥ0

in (8), we find Kreg
m0

(W ) ≤ Kreg
m0

, which by Lemma 3 completes the proof. �

Next, we bound the contribution of nearly grazing components for m = 1.

Lemma 5. For any ε > 0 there exists k0 so that

lim
δ→0

sup
W :|W |<δ

∗
∑

i

1

Λi,1
< ε,

where
∑∗ means that the sum is restricted to nearly grazing H-components

Wi,1.

Proof. This lemma is analogous to [11, Lemma 2.13] but the proof differs
substantially as the free flight now is unbounded. However, we can use [9,
Remark 5.59].
Let us write W1 = W \ Mn0 and W2 = W ∩ Mn0. Let S∗j be the sum

corresponding to the images of Wj for j = 1, 2. As before, for any k0 there
exists some δ > 0 so that if |W | < δ, then F (W1) have at most L = τ̄ /τmin+2
connected components. Each of these components could be further cut by
secondary singularities, so S∗1 ≤ L

∑

k≥k0
Ck−2 ≤ CLk−1

0 which is less then

ε/2 assuming that k0 > 2CL/ε. For any fixed k0 and n0, we can make S∗2 ≤
ε/2 by further reducing δ if needed, exactly as in [9, Remark 5.59]. �

Now Theorem 2 follows from Lemmas 3, 4 and 5 as in [11]. Note that there
is a typo at the middle of page 1231 in [11] as one only has

(9) Ln+m(W ) ≤
∑

i

1

Λi,n

Lm(Wi,n),

where

(10) Ln(W ) =
∑

i

1

Λi,n

(and the equation in (9) may not hold), but this is enough since Theorem 2
only gives an upper bound.

5. Proof of Theorem 3

By (A1) and (A2), we can group the corridors into three categories: H ∈ H1

if H is bounded by two regular points, H ∈ H2 if H is bounded by a regular
point and a corner point and H ∈ H3 if H is bounded by two corner points.
We say that the corridor is of type 1, 2, 3, respectively. We also say that a
boundary point x ∈ AH with H ∈ Hj is of type j.
The reason we assume (A1) and (A2) is to guarantee that there are only

3 types here. Without these assumptions, there would be many more types
(see [4] for a description of all types in general).
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Let us fix an enumeration of the set ∪HAH as {x1, ..., xhmax}. Note that it
is possible that ΠD(xh) = ΠD(xh′) for some h ∈ H , h′ ∈ H ′, H 6= H ′ in case
ΠD(xh) is a corner point.

Recall that in case of type 1 corridors

AH = {(rH,r, π/2), (rH,r,−π/2), (rH,l, π/2), (rH,l,−π/2)}.
Also recall the notation introduced in Section 4: for any point xh ∈ AH

for some H ∈ H1, we denote by D±(h, n) the domains where F± is smooth
in a neighborhood of xh. We also note that F (D+(h, n)) = D−(h′, n) with
xh = (rH,l/r,±π/2) and xh′ = (rH,r/l,∓π/2).

If H ∈ H3, then AH is of the form (2). To emphasize the difference from
the previous case, we will denote by E+(h, n) the set of points x ∈ M in a
vicinity of xh so that the free flight of x passes by n copies of the scatterer
before colliding on the other side of the corridor whenever xh is of type 3. A
simple geometric argument shows that E+(h, n) is of size ≈ n−2 in the unstable
direction and ≈ n−1 in the stable direction (see [4, Section 4], and Figure 4).
The image of E+(h, n) is in a small neighborhood of a point (q,−v), where
(q, v) ∈ AH .

Type 2 corridors will require special consideration. Let xh = (rh, ϕh) ∈ AH

with H ∈ H2. If rh corresponds to a regular point, then we define D±(h, n)
with the same asymptotic size as in case H1 and if rh corresponds to a corner
point, then we define E+(h, n) with the same asymptotic size as in case H3.

Recall that

(11) A = ∪HAH and A′ = {xh ∈ A : ΠDxh is a corner point }
Let us write

(12) E(h, n) = E(xh, n) = ∪N≥nE
+(h,N), En = ∪h:xh∈A′E(h, n),

B(h, n) = B(xh, n) = ∪N≥nD
+(h,N),

Bn = ∪h:xhregular boundary point of a type 2 corridorB(h, n).(13)

and finally
En1Bn2 = En1 ∪ Bn2

That is, En1Bn2 is the set of points that experience a long free flight in type
2 or type 3 corridors. This set is the disjoint union of En1 and Bn2 , where En1

is contained in a neighborhood of A′ and Bn2 is contained in a neighborhood
of A \ A′. Note that when there are no type 2 corridors we have Bn2 = ∅. In
this case, the forthcoming proof could be simplified substantially.

Let us fix a large integer N1 so that the sets D+(h, n) and E+(h′, n′) are
disjoint whenever n, n′ ≥ N1, h 6= h′. We start with a geometric lemma.

Lemma 6. There is a constant C2 so that for every unstable curve W with
W ⊂ EN1, there is some T = T (W ) so that for all x ∈ W , T ≤ τ(x) ≤ C2T
holds.
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E
+
(h,n)

1/n2

1/n

1/n

1/n

1/n2

1/n1/2

D
+
(h,n)

Figure 4. Singularity structure near type 3 and type 1 bound-
ary points. An unstable curve is indicated with bold on both
panels.

Proof. For every h with xh = (rh, ϕh) ∈ A′, we will show that the desired C2

exists for unstable curves in E(xh, N1). This is sufficient as there are finitely
many corridors and we can take the biggest C2. Let us assume that rh is the
left endpoint of the corresponding boundary curve Γ (the other case is similar).
Without loss of generality we can assume that the endpoint of W is a point

(rh, ϕ0). Indeed, if the curve does not stretch all the way to the left boundary
ofM, we can smoothly extend it to the ”southwest”. A key observation is that
ϕ0 < ϕh. Indeed, if ϕ0 ≥ ϕh, then since unstable curves are in the ”northeast
direction”, W could not intersect EN1 . Now we choose T = T (W ) = τ(rh, ϕ0).
We can assume that the other edpoint of W is (r′, ϕ′) ∈ ∂EN1 so that the next
collision after leaving (r′, ϕ′) is at the same corner point (and so is improper).
Strictly speaking, (r′, ϕ′) is not contained in W as (r′, ϕ′) /∈ EN1, that is, W
is a curve that does not contain one of its endpoints. Indeed, if W does not
fully cross EN1, we can extend it smoothly to the northeast. By transverality,
the triangle with vertices (rh, ϕh), (rh, ϕ0) and (r′, ϕ′) has angles that are
bounded away from zero (specifically by an angle γ as discussed in Section 2.3).
Consequently, the distance between (rh, ϕh), and (r′, ϕ′) is bounded below by
a universal constant times ϕh−ϕ0. We also know that ϕh−ϕ0 ≈ 1/T , whence
τ(r′, ϕ′) < C2T for a geometric constant C2. The lemma follows. �
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Figure 4 shows unstable curves (indicated with bold) with long flight in
corridors of type 1 and 3. In case of type 1 corridors, the free flight function
restricted to an ustable curve W may be unbounded (see the right side of
figure), but any long flight is necessarily followed by a nearly grazing collision.
This nearly grazing collision makes it easier to control the sum of expansion
factors, as in the proof of Theorem 2. As seen on the left side of the figure
and proven by Lemma 6, for any unstable curve W , the free flight function
restricted to W is bounded in type 3 corridors (with a bound depending on
W ). We will leverage this fact in Lemma 7 to show that such a flight can only
increases the Z1 function of a standard family by a bounded factor.

Most work is required in case of type 2 corridors. In this case, given an
unstable curve near the regular boundary point (as on the right panel of Figure
4) the free flight is unbounded and after the collision, the expansion is not large.
In particular, the sum in (10) is infinite. To overcome this difficulty, we prove
in Lemma 8 that the Zq function remains finite for any q < 1. Then, we show
that multiple visits into corridors of type 2 or 3 in a short succession are not
possible (Lemma 9).

Lemma 7. There is some integer N2 ≥ N1 and a constant C3 so that for
every standard pair ℓ = (W, ρ) with W ⊂ EN2,

(14) Z1(F∗(ℓ)) ≤ C3Z1(ℓ).

Proof. Let xh = (rh, ϕh) and ℓ = (W, ρ) be such that W ⊂ E(xh, N2) for some
N2 to be specified later. Assume first that xh is a type 3 boundary point. Let
us write Vn = W ∩E+(xh, n) andWn = F (Vn) for n ≥ N2. Next we claim that
there is a constant β > 0 only depending on D such that for all (r, ϕ) ∈ W and
with the notation F (r, ϕ) = (r′, ϕ′), we have cosϕ′ ≥ β. Indeed, let β = α/2,
where α is the minimal angle between the half tangents of the boundary points
bounding the corridors and the directions of the corresponding corridor vH
(α > 0 by assumption (A2)). Then by choosing N2 sufficiently large, we can
guarantee that the angle between the line segment emanating from (r, ϕ) and
vH is less than α/2, which implies the claim. Without loss of generality we can
assume that k0 > β−1 and so for all n ≥ N2, Wn is a homogeneous unstable
curve and the expansion of F on Vn is ≈ n. Furthermore, a simple geometric
argument shows |Wn| ≈ n−1 whence |Vn| ≈ n−2. By Lemma 6, there is some
nW so that F (W ) = ∪C2nW

n=nW
Wn. We conclude

(15) L1(W ) =

C2nW
∑

n=nW

1

Λn,1

≤ C

C2nW
∑

n=nW

1

n
≤ 2C lnC2.

We obtained the variant of (14), where ρ is constant. Generalizing it to all
admissible densities ρ is standard only using (5) and (6) and so we omit the
proof (see e.g. [10]).

In case xh is a type 2 boundary corner point, we write Vn =W ∩E+(xh, n)
and Wn = F (Vn) as before. Now Wn is not a homogeneous curve as it is
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further cut into infinitely many pieces by secondary singularities. However, on
any of these pieces, the expansion factor is large and so L1(W ) is bounded as
in [9, Remark 5.59]. The lemma follows. �

Lemma 8. There is some integer N3 ≥ N2 so that for every q < 1 there is a
constant C4 so that for every standard pair ℓ = (W, ρ) with W ⊂ BN3,

Zq(F∗ℓ) ≤ C4Zq(ℓ).

Proof. Let xh = (rh,±π/2) be a regular boundary point of a type 2 corridor
and let ℓ = (W, ρ) be such that W ⊂ B(xh, N3) for some N3 to be specified
later. As in the case of type 3 corridors (cf. the proof of Lemma 7), we find that
Vn = W ∩ D+

h,n, Wn = F (Vn), the expansion of F on Vn is ≈ n, |Wn| ≈ n−1,

and |Vn| ≈ n−2. The main difference from the case of type 3 corridors is that
now Lemma 6 fails to hold. Indeed, the curve W may be cut into infinitely
many pieces (see the right panel of Figure 4) and so the sum in (15) diverges.
We are going to prove that

(16)
∑

n≥N3

( |W |
|Wn|

)q |Vn|
|W | ≤ C4.

First note that (16) implies the lemma when ρ is constant. The general case
can be proven using (5) and (6). Thus it remains to verify (16). To prove (16),
we distinguish three cases.
First assume that W is cut into infinitely many pieces, that is, Vn 6= ∅ for

infinitely many n’s. Then xh is necessarily an endpoint of W . Let M be the
smallest integer n so that W fully crosses D+

h,n. Then we have |W | ≈ M−1

and so
∑

n≥N3

( |W |
|Wn|

)q |Vn|
|W | ≤ C|W |q−1

∑

n≥M−1

n−2+q ≤ C|W |q−1
∑

n≥C̄|W |−1

n−2+q ≤ C4.

Next, assume that W ⊂ D+
h,M for some M . Then the left hand side of (16)

is (|W |/|WM |)q ≈ M−q, which is also bounded.
Finally, assume that there are positive integers M1 ≤ M2 so that Vn 6= ∅

if and only if M1 ≤ n ≤ M2. The contribution of n = M1 and n = M2 is
bounded as in the second case. Thus it suffices to bound the contribution of
n =M1 + 1, ...,M2 − 1, that is the set of n’s so that W fully crosses D+

h,n. To
simplify the notation, we replace M1+1 by M1 and M2−1 by M2. We obtain

M2
∑

n=M1

( |W |
|Wn|

)q |Vn|
|W | ≤ C|W |q−1

M2
∑

n=M1

n−2+q ≤ C(M−1
1 −M−1

2 )q−1(M q−1
1 −M q−1

2 ).

Writing a =M2/M1 − 1, we find that the above display is bounded by

C(M−1
2 a)q−1M q−1

2

[

(

M1

M2

)q−1

− 1

]

= Caq−1[(1 + a)1−q − 1] =: Cf(a).
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Now f is a continuous function on R+ with lima→∞ f(a) = 1 and lima→0 f(a) =
0 (in fact f(a) ∼ (1− q)aq as a→ 0). Consequently, f is bounded and so (16)
follows. �

Remark 8. The proof of Theorem 3 could be simplified if we knew that the
constant C4 given by Lemma 8 is less than 1. Although the 1-step expansion
as required by (H5) of [10] would not follow, as it does not even hold in type C
billiards, at least long flights in a short succession would not cause a trouble.
Unfortunately we do not know whether C4 < 1 and so we need Lemma 9, which
says that two long free flights in short succession emanating near a corner point
are not possible.

Lemma 9. For every K ∈ N there exists N4 = N4(K) so that for all k =
1, ..., K,

EN4 ∩ F−k(EN4) = ∅.
The proof of Lemma 9 is longer than the proof of the other lemmas. To

avoid disruption in the main ideas here, we postpone this proof to the next
section.

Note that in the case of type 2 corridors, two long flights are possible.
Specifically, we have

Lemma 10. For every K ∈ N there exists N5 = N5(K) so that for all k =
1, 2, ..., K

BN5 ∩ F−k(EN4(K)BN5) = ∅
and for all x ∈ E(xh, N4(K)), the set

k = {k = 1, ..., K : F k(x) ∈ BN5}
can only be non empty if xh is of type 2. In this case, k = {1} or k = {2}.
Proof. Let

N5(K) =
maxx∈A τ(x)

minx∈A τ(x)
C1N

2
4 (K + 2),

where C1 is defined in Lemma 2. If x ∈ B(xh, N5), then as in Lemma 2, we
have either F−1(x) ∈ EN4(K+2) or F

−2(x) ∈ EN4(K+2). Now the result follows
from Lemma 9.

�

For the remaining part of the proof let us fix some q < 1. Recalling (6),
there exists a constant c̄ only depending on D so that for any standard pair
ℓ = (W, ρ),

(17) 1/c̄ ≤ Zq(ℓ)|W |q ≤ c̄, 1/c̄ ≤ Z1(ℓ)|W | ≤ c̄.

For a given homogeneous unstable curve W we write

TN,N ′(W ) = TN,N ′,D(W ) = min{m ≥ 0 : F−m(W ) ⊂ ENBN ′}.
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The next lemma states a weaker version of Theorem 3, namely, when only
those H-components in Fm(ℓ) that have not visited ENBN ′ for some N,N ′

large are considered.

Lemma 11. There exists m0 ∈ N, and C5 so that for every N,N ′ and for
every K there is some δ0 = δ0(N,N

′, K) such that the following holds for every
standard pair ℓ = (W, ρ) with |W | < δ0 and for all m = 1, 2, ..., 2Km0 + 6

(18) Z1(F
m
∗ (ℓ)|Wi:TN,N′ (Wi)>m) < C5Z1(ℓ),

(19) Z1(F
Km0
∗ (ℓ)|Wi:TN,N′ (Wi)>Km0) < 2−KZ1(ℓ).

Proof. First, assume that ρ is constant. Now we claim the following: there is
some m0 and C5 so that for any N,N ′

(20) lim
δ→0

sup
W :|W |<δ

∑

Wi∈Fm0 (W ):TN,N′ (Wi)>m0

1

Λi,m0

<
1

2
,

and for any m,

(21) lim
δ→0

sup
W :|W |<δ

∑

Wi∈Fm:TN,N′ (Wi)>m

1

Λi,m

< C5.

To prove this claim, let us replace a small neighborhood (of diameter < cN−1)
of the corner points bounding the corridors by a smooth curve so as the
new billiard table D′ = D′(N) contains D. By construction, for all Wi H-
component of Fm

D′(W ) with TN,N ′,D′(Wi) > m and for all x ∈ Wi, the orbits
F−m
D (x), ...., F−1

D (x), x and F−m
D′ (x), ...., F−1

D′ (x), x coincide. Then Theorem 2
implies that the left hand side of (20) is bounded by some number β < 1.

Replacing m0 by m
ln(1/2)/ lnβ
0 and using (9) and Lemma 1, we obtain (20).

Although we only proved Lemma 1 under the conditions of Theorem 2, it is
valid under the more general conditions of Theorem 3. Indeed, a long flight
and an almost grazing collision expands an unstable curve more than just a
long flight. Likewise, we obtain

(22) lim
δ→0

sup
W :|W |<δ

∑

Wi∈FKm0 :TN,N′ (Wi)>Km0

1

Λi,Km0

< 2−K .

Also observe that (21) follows from the proof of Theorem 2 for m ≤ m0.
Then it also follows for m ≥ m0 by (20) and by (9).
Since our construction did not depend on N ′, it remains to prove that m0

and C5 are uniform in N . Although the curvature of ∂D′ is not uniformly
bounded in N , points visiting the part of the phase space with unbounded
curvature are discarded. Then it remains to observe that the constants Ξ and
C# appearing in the proof of Theorem 2 are uniform in D′ and so is m0 and
C5.
Now (22) and (21) combined with (5) and (6) imply (18) and (19).
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Finally, if ρ is not constant, we just need to apply (5) once more to complete
the proof. �

In the setup of Lemma 11, we discard the points one step before reaching
ENBN ′ . The next lemma says that we can iterate the map once more and only
discard the points upon reaching ENBN ′ . Let

T
′
N,N ′(W ) = min{m ≥ 1 : F−m(W ) ⊂ ENBN ′}.

Lemma 12. There exists C6 so that for every K and for every large N,N ′,
there is some δ′0 = δ′0(N,N

′, K) such that the following holds for every standard
pair ℓ = (W, ρ) with |W | < δ′0 and for all m = 1, 2, ..., 2Km0 + 6

(23) Z1(F
m
∗ (ℓ)|Wi:T ′

N,N′
(Wi)>m) < C6Z1(ℓ)

(24) Z1(F
Km0+m
∗ (ℓ)|Wi:T ′

N,N′
(Wi)>Km0+m) < C62

−KZ1(ℓ)

Proof. First we claim that

(25) Z1(F
Km0+m
∗ (ℓ)|Wi:TN,N′ (Wi)>Km0+m) < C52

−KZ1(ℓ)

for all standard pairs ℓ = (W, ρ) with |W | < (δ0)
3Km0 . Indeed, by Lemma 1,

any H-component Wi ⊂ FKm0(W ) satisfies |Wi| < δ0. By applying (18) to the
H-components Wi ⊂ FKm0(W ), (18) and (19) imply (25).

To derive (23), we write

Z1(F
m
∗ (ℓ)|Wi:T ′

N,N′
(Wi)>m)

= Z1(F
m
∗ (ℓ)|Wi:TN,N′(Wi)>m) + Z1(F

m
∗ (ℓ)|Wi:Wi⊂ENBN′ ,TN,N′(Wi)>m) =: Z11 + Z12

By (18), Z11 ≤ C5Z1(ℓ). Let us write j ∈ J if the H-component Wj,m−1 ⊂
Fm−1(W ) contains a point x ∈ Wj,m−1 with F (x) ∈ ENBN ′ and TN,N ′(Wj) >

m − 1. Also write ℓj = (Wj , ρj,m−1). Choosing δ′0 ≤ (δ̃)3
2(Km0+1)

for some

δ̃ ≤ δ0, we have |Wj| ≤ δ̃.

We claim that there is some δ̃ < δ0 and C7 so that

(26) Z1(F∗(ℓj)) ≤ C7Z1(ℓj) for all j ∈ J .
To prove (26), we first claim that there is a constant C only depending on

D so that for any N > N4(1) and N ′ > N5(1) fixed, and for any x ∈ ℓj ,
τ(x) < C. Indeed, it is not possible for x to have a long flight in a type 2 or
type 3 corridor since x /∈ ENBN ′ . Let x be so that F (x) ∈ ENBN ′ . Then it is
also not possible for x to have a long flight in a type 1 corridor, because in
this case F (x) would be close to a boundary point of a type 1 corridor and we
could not have F (x) ∈ ENBN ′ . Thus τ(x) < C. This estimate can be extended

to all x ∈ ℓj by choosing δ̃ < δ0 (for example, smaller than half of the smallest
distance between two distinct points in A = ∪corridorsAH). Now since the free
flight function on ℓj is uniformly bounded, (26) follows from [11].
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We conclude

Z12 ≤
∑

j∈J

cjZ1(F∗(ℓj)) ≤ C7

∑

j∈J

cjZ1(ℓj)

≤ C7Z1(F
m−1
∗ (ℓ)|Wj :TN,N′ (Wj)>m−1) ≤ C7C5Z1(ℓ).

Thus (23) follows with C6 = C5(1 + C7). The derivation of (24) from (25) is
similar.

�

Recall that two long flights are possible in a type 2 corridor, right after one
another or separated by exactly one short flight. Our next lemma says that the
Zq function can be controlled throughout the course of these two long flights.

Lemma 13. There is some C8 so that for any standard pair ℓ̃ = (W̃ , ρ̃) with

W̃ ⊂ EN4(4)BN5(4),

Zq(F
3
∗ (ℓ̃)) ≤ C8Zq(ℓ̃).

We finish the proof of the theorem first and then will prove Lemma 13.
First, we fix a large constant K so that

(27) C6c̄
42−qK(1 + (2Km0)C8C6c̄

4) <
1

2

holds. Next, we choose M = 2Km0 + 6. Then, we choose Ñ = N4(M), Ñ ′ =
N5(M). Note that by Lemma 10, for every x ∈ M there exists m = 0, ...,M
so that

(28) {x, F (x), ..., FM(x)} ∩ EÑBÑ ′ ⊂ {m,m+ 1, m+ 2}.
Finally, we fix δ′0 = δ′0(Ñ , Ñ

′, K) as given by Lemma 12. Then we choose δ1
so small that for anyW with |W | < δ1, for anym = 1, ...,M , any H-component

of Fm(W ) is shorter than δ′0 (e.g., δ1 = (δ′0)
3M works by Lemma 1).

We are going to prove Theorem 3 with κ = 1/2, δ = δ1 and M as chosen
above.
Note that all standard pairs in the proof are shorter than δ′0. Thus, by

further reducing δ′0 if necessary, we can assume that any standard pair inter-
secting EÑBÑ ′ is fully contained in EÑ−1BÑ ′−1. To simplify notations, we will
assume that once a standard pair intersects EÑBÑ ′ , it is also fully contained
in EÑBÑ ′ .
Let us fix a standard pair ℓ = (W, ρ) with |W | < δ1, let Wi,m denote an H-

component of Fm(W ) and write FM
∗ (ℓ) =

∑

i ci,Mℓi, where ℓi = (Wi,M , ρi,M).
The idea of the proof is now the following. Let the time of the first visit to
EÑBÑ ′ be m. Then no visit to EÑBÑ ′ is possible any time after m + 2 by
Lemma 10. If m ≤ M/2, then M − m − 3 > Km0 and so we can use (24)
after the last visit to show that the Z function does not grow. Likewise, if
m > M/2, we will use (24) at time zero (before the visit).
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To make this idea precise, for all standard pairs ℓi,M we associate a set
Ti of integers so that for any x ∈ F−M(Wi,M), we have F k(x) ∈ EÑBÑ ′ for
k = 0, 1, ...,M − 1 if and only if k ∈ Ti. By Lemma 10, all associated sets T
can contain up to 2 integers. Furthermore, if T contains exactly 2 numbers,
then T = {m,m+ 1} or T = {m,m+ 2} for some m = 0, ...,M − 1. We have
Zq(F

M
∗ (ℓ)) =

∑

i ci,MZq(ℓi,M). Now let

Zm = Zq(F
M
∗ (ℓ)|Wi:minTi=m)

and

ZM+ = Zq(F
M
∗ (ℓ)|Wi:Ti=∅) = Zq(F

M
∗ (ℓ)|Wi:T ′

Ñ,Ñ′
(Wi)>M).

Clearly, we have

(29) Zq(F
M
∗ (ℓ)) =

[

M−1
∑

m=0

Zm

]

+ ZM+.

Given a substandard family G = (ℓα = (Wα, ρα)α∈N, λ) ( recall that sub-
standard means s =

∑∞
α=1 λα ≤ 1), we have

Zq(G) =
∞
∑

α=1

λαZq(ℓα) ≤ c̄s
∞
∑

α=1

λα
s

1

|Wα|q

≤ c̄s

[

∞
∑

α=1

λα
s

1

|Wα|

]q

≤ c̄2s1−q[Z1(G)]q

≤ c̄2[Z1(G)]q,(30)

where we used (17) in the first two lines and Jensen’s inequality in the second
line. Now combining (24) with (30), we find

(31) ZM+ ≤ c̄2[C62
−KZ1(ℓ)]

q ≤ c̄2
[

C62
−K c̄

1

|W |

]q

≤ C6c̄
42−qKZq(ℓ).

Next, fix some m ∈ [0,M/2] and consider the substandard family

Gm = (ℓi,m = (Wi,m, ρi,m)i∈Im , λi = ci,m),

where i ∈ Im if

Wi,m ∈ EÑBÑ ′ ,T ′
Ñ,Ñ ′

(Wi,m) > m.

Note that Gm corresponds to the image under Fm of the points in W whose
first hitting time of the set EÑBÑ ′ is exactly m and so

Zm = Zq(F
M−m
∗ (Gm)).

By (23),

Z1(GM−m) ≤ C6Z1(ℓ).

Now using (30) we compute as in (31) that

(32) Zq(Gm) ≤ c̄2[Z1(Gm)]
q ≤ c̄2[C6Z1(ℓ)]

q ≤ C6c̄
4Zq(ℓ).
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Now fix some ℓi,m = (Wi,m, ρi,m) ∈ Gm. By Lemma 13, we have

(33) Zq(F
3
∗ (ℓi,m)) ≤ C8Zq(ℓi,m).

Now fix any Wj,m+3 ∈ F 3(Wi,m). By (30),

Zq(F
M−m−3
∗ (ℓj,m+3)) ≤ c̄2[Z1(F

M−m−3
∗ (ℓj,m+3))]

q.

By (28), no points of Wj,m+3 can visit EÑBÑ ′ for M −m− 3 iterations. Com-
bining this observation with the fact that M −m − 3 ≥ Km0 and with (24),
we find

(34) Zq(F
M−m−3
∗ (ℓj,m+3)) ≤ c̄2[C62

−KZ1(ℓj,m+3))]
q ≤ C6c̄

42−qKZq(ℓj,m+3).

Now combining (33) and (34) we find

Zm = Zq(F
M−m
∗ (Gm)) ≤ C8C6c̄

42−qKZq(Gm),

and so by (32)

(35) Zm ≤ C8(C6)
2c̄82−qKZq(ℓ).

Finally, let us consider the case m ∈ [M/2 + 1,M ] and define Gm as before.
Since m > Km0, we have by (24) that

Z1(Gm) ≤ C62
−KZ1(ℓ),

and so by (30),

Zq(Gm) ≤ C62
−qK c̄4Zq(ℓ).

Now Lemma 13 implies

Zq(F
3
∗ (Gm)) ≤ C8Zq(GM−m).

Finally, for any ℓj ∈ F 3
∗ (Gm), we combine (30), (28) and (23) to conclude

Zq(F
M−m−3
∗ (ℓj)) ≤ c̄2[Z1(F

M−m−3
∗ (ℓj))]

q ≤ c̄2[C6Z1(ℓj)]
q ≤ C6c̄

4Zq(ℓj).

Combining the last three displayed inequalities, we obtain

(36) Zm ≤ C8(C6)
2c̄82−qKZq(ℓ).

Now we substite the estimates (31), (35) and (36) into (29) to conclude

(37) Zq(F
M
∗ (ℓ)) ≤ C6c̄

42−qK(1 + (2Km0)C8C6c̄
4)Zq(ℓ).

The right hand side of (37) is bounded by Zq(ℓ)/2 by (27). This completes
the proof of Theorem 3 assuming Lemma 13. In the remaining part of this
section, we give a proof of this lemma.

Proof of Lemma 13. Let us write N5 = N5(4) and N4 = N4(4). We will dis-
tinguish three cases.
Case 1: W̃ ⊂ BN5 . By Lemma 8, we have

Zq(F∗(ℓ̃)) < C4Zq(ℓ̃)

and by Lemma 10, we have

(38) (F (W̃ ) ∪ F 2(W̃ )) ∩ (EN4BN5) = ∅.
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Consequently, as in (26), for any standard pair ℓ̃′ = (W̃ ′, ρ̃′) in the standard

family F∗(ℓ̃), we have

(39) Z1(F
2
∗ (ℓ̃

′)) ≤ C2
7Z1(ℓ̃

′).

Using (30), we conclude

Zq(F
3
∗ (ℓ̃)) ≤ c̄4C4C

2
7Zq(ℓ̃).

Case 2: W̃ ⊂ E(xh, N4) for some type 3 boundary point xh. By Lemma 7,
we have

(40) Z1(F∗(ℓ̃)) ≤ C3Z1(ℓ̃).

As in case 1, (38) and (39) hold. Thus Z1(F
3
∗ (ℓ̃)) ≤ C2

7C3Z1(ℓ̃) and so

Zq(F
3
∗ (ℓ̃)) ≤ c̄4C2

7C3Zq(ℓ̃).

Case 3: W̃ ⊂ E(xh, N4) for some type 2 boundary point xh. As in case 2,
(40) holds. By Lemma 2 and by the choice of N5, we can write

F (W̃ ) =
(

∪i∈I1W̃i

)

∪
(

∪i∈I2W̃i

)

∪
(

∪i∈I3W̃i

)

,

where W̃i ⊂ BN5 for all i ∈ I1, F (W̃i) ⊂ BN5 for all i ∈ I2 and (W̃i ∪ F (W̃i)) ∩
(EN4BN5) = ∅ for all i ∈ I3. As in case 1, we derive

Zq(F
2
∗ (ℓ̃i)) < c̄4C4C

2
7Zq(ℓ̃i)

for all i ∈ I1. For i ∈ I2, we have

Z1(F∗(ℓ̃i)) ≤ C7Z1(ℓ̃i)

as in (26). Next, for any ℓ̃i,j ∈ F∗(ℓ̃i) with i ∈ I2,

Zq(F∗(ℓ̃i,j)) < C4Zq(ℓ̃i,j)

by Lemma 8. Finally, for i ∈ I3, we have

Z1(F
2
∗ (ℓ̃i)) ≤ C2

7Z1(ℓ̃i)

as in (26).
Combining the above estimates, we obtain

Zq(F
3
∗ (ℓ̃)) ≤ c̄6C3[3C4C

2
7 ]Zq(ℓ̃).

The lemma follows with C8 = 3c̄6C3C4C
2
7 .

�
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6. Proof of Lemma 9

We can assume N4 ≥ N3. Let

B = ∪H type 3 corridorsAH .

First we prove the lemma under simplifying assumptions and then we proceed
to more general cases. All important ideas appear in the simplest Case 1, but
we need to consider several other cases to allow for the singular behavior of
the orbit of B.

Case 1: No type 2 corridors and B∩RH

−∞,−2 = ∅. Note that the second
assumption means that for any x ∈ B and for all n ≥ 1, F n is continuous at
F 2(x) (recall that the configurational component of F (x) for x ∈ B is always
a corner point by definition (3)).
Since the sets E+(h, n) are disjoint and B is finite, we can find some N̄ so

that

(41) {F k(x) : k = 1, ..., K, x ∈ B} ∩ EN̄ = ∅.
Assume by contradiction that for all N4 ≥ N3 there is some point (p0, ψ0)

so that
(42)

(p0, ψ0) ∈ EN4, (pi, ψi) = F i(p0, ψ0) : (pk̄, ψk̄) ∈ EN4 for some k̄ = 1, ..., K.

As we will see later, pi is not a corner point for any i = 1, ..., k̄, so the points
(pi, ψi) are uniquely defined. By passing to a subsequence of positive integers
N4, we can assume that k̄ does not depend on N4.
Recall Figure 2. Without loss of generality and passing to a further subse-

quence, we can assume that (p0, ψ0) is in a small neighborhood of (rH,r,1, ϕH,r,1)
(the other 3 cases are similar). Then the free flight emanating from (p0, ψ0) is
almost horizontal and is in the northeast direction. Consequently, (p1, ψ1) is
in a small neighborhood of (rH,l,2,−ϕH,l,2) = F (rH,l,1, ϕH,l,1) (also recall (3)).
Now let W ⊂ M be the line segment between the points (rH,l,2,−ϕH,l,2) and
(p1, ψ1). We record for later usage that the tangent of W satisfies dϕ/dr ≥ 0.
Indeed, this follows from the convexity of Γ2,2. Also note that dϕ/dr = ∞
is possible as we can have p1 = rH,l,2. Although W may not be an unsta-
ble curve, F i(W ) will be an unstable curve for all i ≥ 1 by the definition of
unstable cones.
By the second assumption of Case 1, we can find a small ε so that FK is

continuous on the ε neighborhood of F (rH,l,2,−ϕH,l,2). Next observe that there

is some N̂ so that F 2(E((rH,r,1, ϕH,r,1), N̂)) is a subset of the ε neighborhood of

F (rH,l,2,−ϕH,l,2). Now we choose N4 > max{N̄, N̂}. Since N4 > N̂ , FK(W ) is
a connected homogeneous unstable curve, that is, the trajectory of W avoids
the singularity set RH

0 up to K iterations. Since (pk̄, ψk̄) ∈ F k̄−1(W )∩EN4 and

F k̄(W ) is homogeneous, we also have F k̄−1(W ) ⊂ EN4. Thus

F k̄(rH,l,1, ϕH,l,1) = F k̄−1(rH,l,2,−ϕH,l,2) ∈ F k̄−1(W ) ⊂ EN4.
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Since N4 > N̄ , this is a contradiction with the choice of N̄ .

Case 2 No type 2 corridors and for all x ∈ B, and for all n ≥ 2,
ΠDF

n(x) is a regular point. The second assumption means that the future
trajectory of points in B, after the first collision, can contain grazing collisions
but no corner points.

We use the same idea as in the proof of Case 1 with the main difference
that we need to study the flow instead of the map as the latter may not
be continuous at F (rH,l,2,−ϕH,l,2). To derive the contradiction, we need to

consider possibly different collision times k̄ and k̂ of the points (p0, ψ0) and
(rH,l,1, ϕH,l,1).

First, we update the definition of N̄ by replacing k = 1, ..., K by k = 1, ..., L
in (41), where L is a constant only depending on D and K so that for any
x ∈ B, the first L collisions in the future contain at least K + 1 non-grazing
collisions:

(43) {F k(x) : k = 1, ..., L, x ∈ B} ∩ EN̄ = ∅.
To prove that such an L exists, observe that for a given K there is a δ > 0
so that the orbit of B up to K collisions avoids the δ neighborhood of the
type 1 boundary points (as all type 1 boundary points are invariant under the
billiard map). Thus all free flight before the next K collisions is bounded by
some constant τK on B. Also note that two grazing collisions are necessarily
separated by a time τ∗ (this is obvious in case the collisions happen on different
scatterers, and by [6], corner sequences can only contain one grazing collision).
Thus we can choose L = (K + 1)τK/τ∗.

Next we claim that there is some ε so that

(44) dist(∪L
k=1F

k(B), EN̄) > ε.

To prove (44), first note that for every x ∈ B, F k(x) cannot be in EN̄ by
the definition of N̄ . Furthermore, F k(x) /∈ ∂EN̄ for x ∈ B because otherwise
ΠDF

k(x) would be a corner point, contradicting the assumptions of Case 2.
Thus the desired ε > 0 exists.

Since the forward orbit of F (rH,l,2,−ϕH,l,2) only contains regular points, for
any t ≥ 0, the flow Φt is continuous at the point F (rH,l,2,−ϕH,l,2) (recall that
M is identified with a subset of Ω). The continuity of the flow at points whose
orbit avoids corner points follows from [9, Exercise 2.27].

Let Tk =
∑k−1

ℓ=0 τ(F
ℓ(rH,l,2,−ϕH,l,2)). Let P be the configurational com-

ponent of the trajectory of F (rH,l,2,−ϕH,l,2) under the flow in time TL. Let
ε̄ ∈ (0, ε) be so small that any trajectory of the flow up to time TL that stays ε̄
close to P can only have a collision with angle ϕ, cos(ϕ) > ε̄ whenever ε̄ close
to a non-grazing collision of P.

Next we claim the following. There is some N̂ large enough so that for
any N4 > N̂ and for any given (p0, ψ0) satisfying (42) we can find k̂ ≤ L so

that (pk̄, ψk̄) is ε̄ close to F k̂(rH,l,2,−ϕH,l,2). To prove this claim, observe that
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the continuity of ΦTL at F (rH,l,2,−ϕH,l,2) implies the existence of N̂ so that if
(p0, ψ0) ∈ EN̂ , and so (p2, ψ2) is close to F (rH,l,2,−ϕH,l,2), then the trajectories

of these two points remain ε̄ close up to TL flow time. It remains to define k̂ as
the number of collisions in the orbit of F (rH,l,2,−ϕH,l,2) before flow time U+ ε̄,

where U =
∑k̄−1

ℓ=1 τ(pℓ, ψℓ). By construction, F (rH,l,2,−ϕH,l,2) experiences at

most k̄ non-grazing collisions before flow time U + ε̄ and so k̂ ≤ L holds.
We choose N4 > max{N̄, N̂} as before. We derived that (pk̄, ψk̄) is ε̄ close

to F k̂(rH,l,2,−ϕH,l,2). Now recall from (44) that F k̂(rH,l,2,−ϕH,l,2) is not in the
ε neighborhood of EN̄ . This contradicts (42).

Case 3 No type 2 corridors and for all x ∈ B, and for all n ≥ 2,
ΠDF

n(x) is not a boundary point of a corridor. The future trajectories of
points in B, after the first collision, are now allowed to contain corner points,
but they cannot return to B.
An important observation is that the orbit of B cannot contain type 1

boundary points. Indeed, the preimage of any type 1 boundary point is itself.
Recall that now the billiard (both flow and map) can be multivalued at

F (rH,l,2,−ϕH,l,2). We say that a multivalued map T is multicontinuous at x
if for every ε there is some δ so that for any y with dist(x, y) < δ there is a
mapping gx,y from T (y) to T (x) (recall that these are sets now!) so that for any
z ∈ T (y), dist(z, gx,y(z)) < ε. By our definition of the billiard at corner points
and by the assumption of Case 3, Φt is multicontinuous at F (rH,l,2,−ϕH,l,2)
for any t ≥ 0. Indeed, the values of the flow were defined as the possible limit
points of nearby regular trajectories.
Now observe that (43) is still valid. Furthermore, (44) also remains true but

requires a new proof. Since the future orbit of B can contain corner points, a
priori it may be possible that F k(x) ∩ ∂EN̄ 6= ∅. However, the intersection is
finite and cannot contain points in B by the assumption of Case 3. Thus for
any point y ∈ F k(x)∩∂EN̄ there is some h and N(y) so that y ∈ ∂E+(h,N(y)).
Since there are finitely many points y, we still can guarantee (44) by choosing
N̄ > maxyN(y).
Now we can conclude the proof of the lemma as in Case 2 with the only

difference that we use one element of each of the sets F k̂(rH,l,2,−ϕH,l,2) and

F k̄(p0, ψ0) to derive the contradiction.

Case 4 No type 2 corridors The difference from Case 3 is that now points
in B are allowed to return to B under branches of iterates of F .
First, observe that (43) is still valid. Indeed, if F k1(x1) = x2 for some

x1, x2 ∈ B, then by definition x2 /∈ EN1 as x2 does not have long free flight. In
Case 4, (44) is not true as F k(B) may intersect with B, and for any positive
integer N , B ⊂ ∂EN . However, we have the weaker statement

dist(∪L
k=1F

k(B) \B, EN̄) < ε
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which is proved exactly as in Case 3.
Consider one element of the set F k̄(p0, ψ0) ∩ EN4. Denote this point by

(pk̄, ψk̄). Once (pk̄, ψk̄) is fixed, we can find a unique sequences of points (pk, ψk)
so that (pk, ψk) ∈ F (pk−1, ψk−1) for k = 1, ..., k̄. Likewise, we can find a unique
sequence of points y1, ..., yk1 so that y1 = (rH,l,2,−ϕH,l,2), yk ∈ F sk(yk−1) and
yk is ε̄ close to (pk, ψk). This is the same construction as in Case 3; the only
difference is that we can only go up to iterate

k1 = min{k : yk ∈ B} ∧ k̂.
Indeed, the construction of Case 3 works up to the first time yk ∈ B. If
k̂ < min{k : yk ∈ B}, then the proof is completed as in Case 3. Assume now

that k̂ = min{k : yk ∈ B}. Recalling the definition of W from Case 1, we see
that yk1 and (pk1 , ψk1) are on a short unstable curve. That is, the tangent of the
line segment (yk1, (pk1 , ψk1)) satisfies dϕ/dr ≥ 0. But note that for any point
z ∈ E(yk1, N4) the tangent of the line segment (yk1, z) satisfies dϕ/dr < 0 (see
one case on the left panel of Figure 4. In the other case, i.e. when ΠDyk1 is the
right endpoint of Γij , the region E(yk1, N4) is to the northwest from yk1.) This
means that (pk1, ψk1) cannot be in EN4 which is a contradiction. Now assume

that k̂ > k1. Assume that yk = (rH,r,1, ϕH,r,1) (the other three cases are
similar). Then define yk1+1 = (rH,r,2,−ϕH,r,2) and (pk1+1, ψk1+1) = F (pk1, ψk1)
(which exists uniquely as ε̄ is small). Furthermore, the line segmentW1 joining
yk1+1 and (pk1+1, ψk1+1) has a tangent that satisfies dϕ/dr ≥ 0. Then we can
repeat the previous construction with (p0, ψ0) replaced by (pk1+1, ψk1+1) and
y1 replaced by yk1+1. Let

k2 = min{k > k1 : yk ∈ B} ∧ k̂.
If k̂ ≤ min{k > k1 : yk ∈ B}, then the proof is completed as before. If

k̂ > min{k > k1 : yk ∈ B}, then we can define (pk2+1, ψk2+1), yk2+1 as before.
Following this procedure inductively, we consider as many kℓ’s as needed. For
some ℓ < K, we will have k̂ < kℓ whence we can finish the proof.

Case 5 Some type 2 corridors

When type 2 corridors are allowed, the previous proof can be repeated with
minor changes, which we list next. First, we replace B by A′, where A′ is
defined in (11). Let (p0, ψ0) ∈ E(xh, N4) as before. If xh ∈ B, we proceed as
before. Assume now that xh = (rh, ϕh) ∈ A′ \ B. Then the boundary points
of the corresponding corridor H are

AH = {xh = (rh, ϕh), xh′ = (rh′, ϕh′), (rh′′,−π/2), (rh′′, π/2)}.
Here, rh and rh′ correspond to the corner point on one side of the corridor,
and the points (rh′′ ,±π/2) correspond to the regular boundary point of the
corridor. As in Lemma 2, we find that either F 2(p0, ψ0) or F

3(p0, ψ0) is in a
small neighborhood of (rh′,−ϕh′). Indeed, the particle starting from (p0, ψ0)
experiences a long free flight, after which it collides once or twice in a small
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neighborhood of the regular boundary point of the corridor, and then has
another long free flight terminating in a small neighborhood of the boundary
corner point. Replacing (p1, ψ1) with either F 2(p0, ψ0) or F

3(p0, ψ0) (whichever
is close to (rh′,−ϕh′)), and making similar adjustment at all times k1, k2, ..., kℓ
as introduced in Case 4, we can repeat the proof of Case 4.

7. Proof of Theorem 4

Theorem 4 is quite intuitive. Indeed, conditions (A1) and (A2) prescribe
degeneracies in the geometry which can be easily destroyed by a small per-
turbation (e.g., the genericity of (A1) was stated in [17] without a proof). It
is not difficult to turn this intuition into a rigorous proof, but we decided to
include such a proof for completeness.
Let us fix some combinatorial data (d, J1, ..., Jd). Since D is a disjoint union

of the open sets Dd,J1,...,Jd, it is enough to prove the theorem for Dd,J1,...,Jd. To
simplify the notation, we will drop the subscript and only write D instead of
Dd,J1,...,Jd in the sequel.
We say that an incipient corridor H is a direction v = vH ∈ [0, π) and a

connected subset QH of D with empty interior satisfying (1). The difference
between corridors and incipient corridors is that in case of the latter one, QH

has empty interior. That is, the configurational component of an infinite orbit
that only experiences grazing collisions, but does so on both sides of the flight,
constitutes an incipient corridor.
Now define the set D0 ⊂ D as the set of billiard tables D that satisfy (A1)

and (A2) and do not have incipient corridors. We are going to prove that D0

is open and dense. This clearly implies the theorem.

Step 1: D0 is open

Given D ∈ D0, we need to find ε > 0 so that U , the ε neighborhood of D, is
contained in D0. For D ∈ D0, let κ+ denote the maximal curvature at regular
points. Then T

2 \D contains a disc of radius κ−1
+ . By choosing ε < κ−1

+ /2, we
ensure that for all D′ ⊂ U there is a disc of radius κ−1

+ /2 inside T
2 \ D′.

Next we claim that there is a finite set V ⊂ S1 so that for any D′ ⊂ U and
for any corridor H on D′, the direction of H satisfies vH ∈ V. To prove the
claim, first observe that for any direction vH , tan vH is rational. Indeed, if it
was not rational, then the set {q+ tvH}t∈R would be dense in T

2. Now assume
that vH ∈ [0, π/4] (the other cases are similar). Let us write tan vH = P/Q
where 0 < P < Q are coprime integers. Then necessarily Q < 3κ+ because
otherwise the set T2 \ {q + tvH}t∈R would not contain a ball of radius κ−1

+ /2.
The claim follows.
Let V0 ⊂ V be the set of directions in which there is a corridor on D and

let v ∈ V \V0. Now we claim that there is some δv > 0 so that for any q ∈ T
2,

the line q + tv, t ∈ R intersects with the complement of the δv neighborhood
of D. Indeed, this follows from the assumption that D does not have incipient
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corridors and from compactness. Likewise, for any v ∈ V0 there is some
δv > 0 so that for any q /∈ ∪H:vH=vBδv(QH) the line q + tv, t ∈ R intersects
with the complement of the δv neighborhood of D. Here, Bρ(Q) means the ρ
neighborhood of Q ⊂ T

2. Further reducing ε if necessary, we can assume that
ε < δv for all v ∈ V. Consequently, for all D′ ∈ U , there is an injection from
the set of corridors of D′ to the set of corridors of D preserving the angle of
the corridors. Indeed, by the choise of ε, no new corridor can open up if we
perturb D with an ε small C3 (in fact C0) perturbation. It may be possible
at this point that some corridors close during the perturbation, which we rule
out next.

Now since D satisfies (A1), the following is true. For any corridor H on D,
we can find some εH > 0 so that for any q in the εH neighborhood of QH ,

{q + tvH : t ∈ R} ∩ (T2 \ D) ⊂ BεH (BH).

Here, BH = ∂QH ∩∂D has two elements by (A1). Further reducing ε as neces-
sary, we can assume ε < εH/2 for all corridors H on D. Now by construction
for any corridor H on D and for any D′ ∈ U , we can find a correspoding
corridor H ′ on D′ so that vH = vH′ and the symmetric difference of QH and
QH′ is contained in the ε neighborhood of the boundary of QH . In particular,
the injection constructed in the previous paragraph is now a bijection. Fur-
thermore, BH′ = ∂QH′ ∩ ∂D′ has two elements. We conclude that D′ satisfies
(A1) and has no incipient corridors.

Finally, since D satisfies (A2), there is some angle α > 0 so that for any
type 2 or 3 corridor H and for any boundary corner point qH ∈ BH , the angle
between vH and any one-sided tangent to ∂D at qH is bigger than α. Further
reducing ε if necessary, we can assume ε < α/2. This guarantees that all
D′ ∈ U satisfy (A2). It follows that D0 is open.

Step 2: D0 is dense

We will need the following simple lemma.

Lemma 14. (Local enlargement) Let D be an admissible billiard table, q ∈ ∂D
and ε > 0. Then there exists another admissible billiard table D̃ so that

• d(D, D̃) < ε

• D and D̃ coincide on the complement of the ε neighborhood of q
• D̃ ⊂ D with q being in the interior of T2 \ D̃

Proof. Assume that q ∈ Γi,j is a regular point. Then we can represent Γi,j in a
small neighborhood of q in local coordinates as a graph of a concave function
f : [−1, 1] → R

2 with f(0) = 0. Fix a C∞ function φ : R → R so that φ(0) = 1
and φ is identically zero outside of (−1/2, 1/2). Let the curvature of Γ at q

be κ and ε′ = min{ε, κ}/(10‖φ‖C3). Now define D̃ to be the same as D except

that the image of f is replaced by the image of f̃ = (1+φ)f . By construction,

D̃ is an admissible table satisfying the requirements.
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The case of corner points is similar, we just need to perturb both curves
meeting at the corner point. �

To prove that D0 is dense, fix an arbitrary D ∈ D and ε > 0. We need to
find some D̂ ∈ D0 with d(D, D̂) < ε. In the remaining part of the proof, the
term corridor can stand for either non-incipient or incipient corridor.
Let us denote by U the ε neighborhood of D. Reducing ε if necessary, we

can assume as in Step 1 that there is a finite set V so that for any D′ ∈ U
and for any corridor H on D′, vH ∈ V. Furthermore, for any given v ∈ V ,
there may only be a bounded number of corridors with direction v. Let us fix
some ordering of the corridors. E.g. fix arbitrary ordering on V and define
H1 < H2 if vH1 < vH2 . For corridors H1, H2 with vH1 = vH2 , project QHi

to the
direction perpendicular to vH1 (when T

2 is identified with the unit square). If
the projections are denoted by πQH1 , πQH2 , then define H1 < H2 if the origin
is closer to πQH1 than to πQH2 .
We are going to consider billiard tables D′ ∈ U with D′ ⊂ D. This guar-

antees that no new corridors open up by the perturbation, that is there is an
injection ιD′ from the set of corridors on D′ to the set of corridors on D that
preserves the angle and the ordering. Note however that this time ι may not be
a bijection as we want to eliminate incipient corridors. Let H1 < H2 < ... < Hk

be the ordered list of corridors of D. Let us say that a corridor on a billiard
table D′ is good if it is non-incipient and does not violate (A1) and (A2).

We are going to define D = D′
0,D′

1, ...,D′
k = D̂ in a way that for every

i = 1, ..., k,

• d(D′
i,D′

i+1) < ε/2k
• the corridors in ι−1

D′

i
({H1, ..., Hi}) are all good.

If these items can be guaranteed, then it follows that D̂ ∈ D0 and d(D, D̂) < ε,
which completes the proof. We prove the above items by induction. Assume
they hold for i. If ι−1

D′

i
({Hi+1}) = ∅, then we define D′

i+1 = D′
i. Next assume

that there is a corridor H ′ on D′
i with ιD′

i
(H ′) = Hi+1. If H ′ is good, then

we define D′
i+1 = D′

i. Let us now assume that H ′ is either incipient or vio-
lates (A1) or (A2). In all cases, we can apply the local enlargement lemma
with D, ε replaced by Di, δi+1 < ε/2k at some point qi+1 to produce another
billiard table D′

i+1 with either ι−1
D′

i+1
({Hi+1}) = ∅ (in case H ′ was incipient)

or ι−1
D′

i+1
(Hi+1) is a good corridor. Indeed, if H ′ is incipient, then we apply

the local enlargement lemma at a point qi+1 ∈ H ′ ∩ ∂D′
i. If H

′ violates (A1),
then it has several boundary points on at least one of its sides. Now we apply
the local enlargement lemma at one of these boundary points. Finally, if H ′

violates (A2), then we apply the local enlargement lemma at the given bound-
ary corner point. Clearly, the perturbation can be made in a way that the
direction of the half-tangents is modified and so ι−1

D′

i+1
(Hi+1) will not violate

(A2).
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Finally, we claim that by choosing δi+1 small, we can guarantee that the
corridors in ι−1

D′

i+1
({H1, ..., Hi}) are all good, too. Note that this is not entirely

obvious as a corner point can be on the boundary of multiple corridors (with
different directions) and so the perturbation at iteration i + 1 may change
ι−1
D′

i
(Hj) with j ≤ i. However, Step 1 ensures that there is some δi+1 ∈ (0, ε/2k)

so that δi+1 small C3 perturbations preserve the goodness of corridors. This
completes the poof of the induction. It follows that D0 is dense.
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