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Recurrence properties of a special type of Heavy-Tailed Random

Walk

Péter Nándori

Abstract

In the proof of the invariance principle for locally perturbed periodic Lorentz process with finite

horizon, a lot of delicate results were needed concerning the recurrence properties of its unperturbed

version. These were analogous to the similar properties of Simple Symmetric Random Walk. How-

ever, in the case of Lorentz process with infinite horizon, the analogous results for the corresponding

random walk are not known, either. In this paper, these properties are ascertained for the appropri-

ate random walk (this happens to be in the non normal domain of attraction of the normal law). As

a tool, an estimation of the remainder term in the local limit theorem for the corresponding random

walk is computed.

1 Introduction

The appearance of the Brownian motion as a limit object in either stochastic or deterministic models is

an extremely important and interesting phenomenon. The first result in this field is due to M. Donsker

(see [8]) who proved that the diffusively scaled Simple Symmetric Random Walk (SSRW) converges to

the Brownian Motion in each dimension. Later, D. Szász and A. Telcs in [19] proved that the local

perturbation in the integer lattice of dimension at least two does not spoil the Brownian limit.

In the last decades, a more complex model, i.e. planar periodic Lorentz process was proven to have

Brownian motion, as a limit object. Here, one considers periodically situated fixed strictly convex

smooth scatterers, and a dimensionless point particle moving among the scatterers and bouncing off at

the boundaries according to the classical law of mechanics (the angle of incidence coincides the angle

of reflection). In the case of finite horizon (i.e. when the free flight vector of the particle is bounded),

diffusive scaling produces Brownian motion (see [1] and [2]). In the case of infinite horizon (i.e. when the

free flight vector of the particle is unbounded) a superdiffusive scaling is needed to obtain the non-trivial

Brownian limit (see [20] and [4]). Again, the question of the effect of local perturbations naturally arises.

This topic has a physical motivation as well, since Lorentz process can be thought of as the movement of

a ”classical” electron in a crystal, when local perturbation can be some impurities or some locally acting

external force. The Brownian limit for diffusively scaled periodic Lorentz process with finite horizon and

local perturbation was proven in [6] and [7]. Note that here a more involved investigation was needed

than in the case of SSRW, namely, the wide treatment of recurrence properties in [6] was essential.

Recently, D. Paulin and D. Szász proved ([16]) that the random walk, which is very similar to the
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Lorentz process with infinite horizon, with local impurities, enjoys the Brownian limit. However, they

only treated some simplified local perturbation (see later), and did not consider the recurrence properties

similar to the ones in [6], which are expected to be important in the case of infinite horizon, too. Here,

we are going to focus on these recurrence properties.

This paper is organized as follows. In Section 2, basic definitions, statements are given and another

motivation for our calculations (i.e. the proof of the polynomial decay of the velocity auto correlation

function for some perturbed random walk) is provided. The quite well known local limit theorem for our

specific type random walk will not be enough for our purposes, i.e. we need to estimate the remainder

term of it. Section 3 is devoted to this computation. In Section 4, the desired recurrence properties are

obtained, while in Section 5 we give a final remark, and indicate a possible direction of further research.

2 Preliminaries

Let us consider a Random Walk, the behavior of which is close to the one of the Lorentz process with

infinite horizon. Namely, define independent random variables Xi, such that

P (Xi = n) = c1|n|−3,

if n 6= 0, and Ei to be uniformly distributed on the 4 unit vectors in Z2. Now put ξi = XiEi. (Here,

of course, c1 = 1
2ζ(3) , but this will not be important for us.) Define the Heavy-Tailed Random Walk

(HTRW) by Sn :=
∑n

i=1 ξi.

This distribution is the same, as the one of the free flight vector of the Lorentz process with infinite

horizon (see [20]). However, one could think that our choice is rather special, as the walker can only

step along the x and y axis. But this is not the case, as a particle performing Lorentz process can have

arbitrary long steps only in finitely many directions, too. Here, we choose that two particular directions,

but this is not essential.

Further, define the one dimensional HTRW as

Qn :=
n
∑

i=1

Xi.

The quite well-known local limit theorem in one dimension states that

P(Qn = x) ∼ 1

2
√
πc1n logn

exp

(

− x2

4c1n logn

)

(1)

and in two dimensions that

P(Sn = x) ∼ 1

4πc1n logn
exp

(

− |x|2
4c1n logn

)

. (2)

These can found in [17]. Later, we will need estimations on the error terms in (1) and (2), and by

computing them, a proof of (1) and (2) will be provided.

Further, we will use the notations

u2(n) = P(Sn = (0, 0)),

u1(n) = P(Qn = 0).
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In the case of billiards, a quite frequent strategy is to prove exponential decay of correlations (an

interesting result for its own sake) and then to use this to prove convergence to the Brownian motion

(see [3], for instance). As a motivation for our further calculations, we are going to illustrate that in the

case of local perturbation, this does not seem to be a good strategy.

For this consider the simplest case: a perturbed SSRW (Tn) in Zd, where perturbation means that in

the origin there is no scatterer, i.e. outside of the origin Tn behaves like an ordinary SSRW, while it flies

through the origin. More precisely,

P (Tn+1 = ei|Tn−1 = −ei, Tn = 0) = 1, (3)

where ei is some neighboring point of the origin in Zd. The following Proposition is well known in the

physics literature (see, for example [18]) but surprisingly, I was unable to find a mathematical proof for

it.

Proposition 1 The velocity autocorrelation function of Tn is O
(

n−(d/2+1)
)

.

Proof. First, suppose that d = 1 and T0 = 1. We can identify our process with an unperturbed SSRW

- Un, say - by simply dropping the origin and the extra step from it. Formally, define τ(n) = #{1 ≤ k <

n : Tk = 0}. Now, if Tn > 0, then let U(n − τ(n)) = Tn. If Tn < 0, then U(n − τ(n)) = Tn + 1. Now,

we have to show that

P(U(2n) = 0, U(2n+ 1) = 1)− P(U(2n+ 1) = 1, U(2n+ 2) = 0)

=
1

2
[P(U(2n) = 0)− P(U(2n+ 1) = 1)] = O

(

n−3/2
)

,

which is an elementary consequence of the well known Edgeworth expansion.

Now, suppose that d > 1 and T0 = (1, 0, ..., 0). It suffices to prove
∫

Ω

I{Tn=T0} − I{Tn=−T0}dP = O
(

n−(d/2+1)
)

. (4)

Let V be the orthogonal complement space of T0 and define

H = {ω : (V \ 0) ∩ {T0, ..., Tn} 6= ∅} ⊂ Ω.

Because of the reflection principle, the part of the integral in (4) over H is zero. The integral over Ω \H
can be treated similarly, as it was done in the one dimensional case.

3 Local Limit Theorem with Remainder Term

The aim of this section is to estimate remainder term in the limit theorem (2). To do this, first we

have to deal with the one dimensional case. Similar calculations were done previously, see, for example

[12] and [14]. However, in these articles only one dimensional, non-lattice distributions were considered.

Fortunately, we do not need precise calculation of the remainder term, i.e. summability is enough for

our purposes. As usual, we start with the computation of the characteristic function.
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Lemma 1 For the characteristic function φ of X1

φ(t) = 1− 2c1t
2| log |t||+O

(

t2
)

,

as t → 0.

Proof. Since the distribution is symmetric, it suffices to prove for t > 0. Fix ε > 0 such that 1−x2−x3 <

cosx < 1− x2 + x3 if |x| < ε. Now, let us consider the decomposition

φ(t) = E(exp(itX)) =

ε⌊t−1⌋
∑

n=1

2c1
n3

cos(tn) +
∞
∑

n=ε⌊t−1⌋+1

2c1
n3

cos(tn) =: S1 + S2.

It is easy to see that

S2 = 2c1

∫ ∞

ε

cosx

x3
dxt2 + o

(

t2
)

= O
(

t2
)

.

On the other hand, since

S1 = 2c1

ε
∑

m=t,m∈tZ

t3m−3 cosm,

we have
∣

∣

∣

∣

∣

∣

S1

2c1
−

ε
∑

m=t,m∈tZ

t3m−3 +

ε
∑

m=t,m∈tZ

t3m−1

∣

∣

∣

∣

∣

∣

<

ε
∑

m=t,m∈tZ

t3.

Now the estimations

ε
∑

m=t,m∈tZ

t3m−3 =
1

2c1
+O

(

t2

ε2

)

ε
∑

m=t,m∈tZ

t3m−1 = t2log
(ε

t

)

+O
(

t2
)

and
ε
∑

m=t,m∈tZ

t3 = O(t2)

finish the proof.

Now, we turn to the estimation of the remainder term in the one dimensional local limit theorem.

Theorem 1 For the one dimensional HTRW the following estimation holds uniformly in x

P(Qn = x)− 1√
2π

√
2c1

√
n logn

exp

(

− x2

4c1n logn

)

= O

(

log logn
√

n log3 n

)

Proof. Let g denote the probability density function of the standard Gaussian law. Then we have

g(z) =
1

2π

∫ ∞

−∞
exp

(

−izs− s2

2

)

ds.
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On the other hand, according to the Fourier inversion formula,

P(Qn = x) =
1

2π

∫ π

−π

exp (−itx)φn(t)dt.

By an elementary argument (see, for example, [13]) our result follows from the statement
∣

∣

∣

∣

√

2c1n logn
1

2π

∫ π

−π

exp(−itx)φn(t)dt− g

(

x√
2c1n logn

)∣

∣

∣

∣

= O

(

log logn

logn

)

, (5)

where the great order on the right hand side is uniform in x. As it is quite usual in the theory of limit

theorems (see again [13]), we estimate the left hand side of (5) by the sum of several integrals
∫

1
log n<|s|<logn

∣

∣

∣

∣

φn

(

s√
2c1n logn

)

− exp

(

−s2

2

)
∣

∣

∣

∣

ds

+

∫

|s|< 1
log n

∣

∣

∣

∣

φn

(

s√
2c1n logn

)∣

∣

∣

∣

ds+

∫

|s|< 1
log n

∣

∣

∣

∣

exp

(

−s2

2

)∣

∣

∣

∣

ds

+

∫

logn<|s|<γ
√
2c1n logn

∣

∣

∣

∣

φn

(

s√
2c1n logn

)
∣

∣

∣

∣

ds

+

∫

γ
√
2c1n logn<|s|<π

√
2c1n logn

∣

∣

∣

∣

φn

(

s√
2c1n logn

)
∣

∣

∣

∣

ds

+

∫

logn<|s|

∣

∣

∣

∣

exp

(

−s2

2

)
∣

∣

∣

∣

ds =: I1 + I2 + I3 + I4 + I5 + I6.

So it suffices to prove that Ij = O
(

log log n
logn

)

, for j ∈ {1, 2, 3, 4, 5, 6}.
For the estimation of I1, observe that for 1

logn < |s| < logn Lemma 1 yields

φn

(

s√
2c1n logn

)

= exp

(

−s2

2

)[

1 +O

(

s2 log log n

logn

)]

,

where the great order on the right hand side is uniform in s. Hence

I1 <

∫

1
log n<|s|<logn

s2 exp

(

−s2

2

)

dsO

(

log logn

log n

)

= O

(

log logn

logn

)

.

Further, |φ(t)| ≤ 1 yields I2 = O
(

log log n
logn

)

and I3 = O
(

log logn
log n

)

is trivial. It can be proven (see

Theorem 4.2.1. in [13]) that there exists γ > 0 such that

φn

(

s√
2c1n logn

)

< exp (−C|s|) ,

with an appropriate C if |t| < γ. This estimation implies I4 < O
(

log logn
logn

)

. Observe that |φ(t)| ≤ 1 and

|φ(t)| = 1 holds if and only if t ∈ 2πZ. As |φ(t)| is continuous in t, there exists some C′ < 1 such that

|φ(t)| < C′ for t ∈ [γ, π]. It follows that I5 < O
(

log logn
logn

)

. Finally, I6 < O
(

log logn
log n

)

by elementary

computation. Hence the statement.

Now, we turn to the two dimensional case. Define the two dimensional characteristic function φ2 :

R2 → C, φ2(t) = E(exp(it′ξ1)), where ′ stands for transpose, and write t = (t1, t2)
′, s = (s1, s2)

′. Lemma

1 implies that

φ2(t) = 1− c1t
2
1| log |t1|| − c1t

2
2| log |t2||+O

(

|t|2
)

,
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as |t| → 0. Similarly to the one dimensional case, the local limit theorem with remainder term reads as

follows.

Theorem 2 For the two dimensional HTRW the following estimation holds uniformly for x ∈ R2

P(Sn = x) − 1

2π2c1n logn
exp

(

− |x|2
4c1n logn

)

= O

(

log log n

n log2 n

)

Proof. The proof is similar to the proof of Theorem 1. Let g denote the probability density function of

the two dimensional standard Gaussian law. Then we have

g(z) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp

(

−it′z − t′t

2

)

dt.

On the other hand, according to the Fourier inversion formula

P(Sn = x) =
1

(2π)2

∫ π

−π

∫ π

−π

exp (−it′x)φn
2 (t)dt.

Just like previously, it is enough to prove that
∣

∣

∣

∣

2c1n logn
1

(2π)2

∫ π

−π

∫ π

−π

exp(−it′x)φn
2 (t)dt− g

(

x√
2c1n logn

)
∣

∣

∣

∣

(6)

is in O
(

log logn
logn

)

. The analogue of the previous decomposition in the present case is

∫

1

log3 n
<|s1|,|s2|<logn

∣

∣

∣

∣

φn
2

(

s√
2c1n logn

)

− exp

(

−s′s

2

)∣

∣

∣

∣

ds

+ 2

∫

|s1|< 1

log3 n
&|s2|<logn

∣

∣

∣

∣

φn
2

(

s√
2c1n logn

)∣

∣

∣

∣

ds

+

∫

|s1|< 1

log3 n
&|s2|<logn

∣

∣

∣

∣

exp

(

−s′s

2

)∣

∣

∣

∣

ds

+

∫

logn<|s|<γ
√
2c1n logn

∣

∣

∣

∣

φn
2

(

s√
2c1n logn

)∣

∣

∣

∣

ds

+

∫

γ
√
2c1n logn<|s|<π

√
2c1n logn

∣

∣

∣

∣

φn
2

(

s√
2c1n logn

)
∣

∣

∣

∣

ds

+

∫

logn<|s|

∣

∣

∣

∣

exp

(

−s′s

2

)∣

∣

∣

∣

ds =: I1 + I2 + I3 + I4 + I5 + I6.

So it suffices to prove that Ij = O
(

log log n
logn

)

, for j ∈ {1, 2, 3, 4, 5, 6}.
All the above integrals can be estimated as it was done in the proof of Theorem 1 except for I4. For the

latter, we adapt the argument of Rvaceva (see [17]). It is easy to see that

ℜ logφ2(at)

ℜ logφ2(t)
→ a2

as |t| → 0 (here ℜ denotes real part). Hence, for γ small enough,

ℜ logφ2(t) > eℜ logφ2(t/e)

6



holds for |t| < γ. Now, pick k ∈ N such that exp(k) ≤ γ
√
2c1n logn < exp(k + 1) and write

I4 ≤
k
∑

m=log logn

∫

exp(m)<|s|<exp(m+1)

∣

∣

∣

∣

φn
2

(

s√
2c1n logn

)
∣

∣

∣

∣

ds

<

k
∑

m=log logn

exp(2m)

∫

1<|s|<e

exp

(

n exp(m)ℜ logφ2

(

s√
2c1n logn

))

ds.

The argument used in the estimation of I1 implies that

nℜ logφ2

(

s√
2c1n logn

)

= −|s|2
2

+ o(1)

holds uniformly for s ∈ [1, e], whence for some C′ < 1

I4 <

k
∑

m=log logn

exp(2m)(e − 1)C′ exp(m).

So we proved I4 = O( 1
logn ), hence the statement.

4 Recurrence properties

In this section we discuss the recurrence properties of Sn and Qn that are supposed to be important in

the case of billiards, too (note that these are analogous to the ones considered in [6]). For SSRW, these

kind of results were proven in [10] and [5]. We begin with the two dimensional case.

Definition 1 Let τ2 be the first return to the origin in two dimensions, i.e.

τ2 = min{n > 0 : Sn = (0, 0)}

Theorem 3 P(τ2 > n) ∼ 4πc1
log logn

Theorem 4 Let Nn
2 = #{k ≤ n : Sk = (0, 0)}. Then

Nn
2

log logn

converges to an exponential random variable with expected value 1
4πc1

.

Theorem 3 and Theorem 4 can be easily proven combining the original proofs (see [9] and [10]) with

(2).

Definition 2 Let tv be the hitting time of the origin, starting from the site v ∈ Z2, i.e.

tv = min{k ≥ 0 : Sk = (0, 0)|S0 = v}.
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The following recurrence property is less known but is of crucial importance in the argument of [7].

Theorem 5
log log tv
log log |v| ⇒

1

U

as |v| → ∞, where U is uniformly distributed on [0, 1] and ⇒ stands for weak convergence.

Proof. We adapt the proof of [10]. Let

ζ(x, n) = #{1 ≤ k ≤ n : Sk = x}

be the local time of the walk at site x up to time n and

γ(n) = P (τ2 > n) .

Further, we will need the estimation on the remainder term of the local limit theorem. More precisely,

we will use the following estimation

P (Sn = y) =
1

4πc1n logn
− |y|2O

(

1

n2 log2 n

)

+O

(

log logn

n log2 n

)

, (7)

where the great orders are uniform in {y : |y| < √
n logn}. Note that (7) is a consequence of Theorem

2. We are going to prove the following assertion.

If we choose xn ∈ Z2 such that

|xn| ∼ exp

(

1

2
logδ n

)

for some fix 0 < δ < 1, then

P (ζ (xn, n) = 0) → δ, (8)

as n → ∞. It is easy to see that (8) implies the statement of the theorem.

As in [10], we consider the identities
n
∑

i=0

u2(i)γ(n− i) = 1 (9)

and

P (ζ (xn, n) = 0) +
n
∑

i=1

P (Si = xn) γ(n− i) = 1. (10)

Combining (9) and (10) we obtain

P (ζ (xn, n) = 0)− γ(n) =

n
∑

i=1

(u2(i)− P (Si = xn)) γ(n− i). (11)

8



Using the fact that γ is monotonic, Theorem 3 and the estimation (7) we conclude that the right hand

side of (11) is smaller than

4πc1 + o(1)

log logn

exp(logδ n)
∑

k=1

1

4πc1k log k

+
4πc1 + o(1)

δ log log n

√
n

∑

k=exp(logδ n)

|xn|2O
(

1

k2 log2 k

)

+

n
∑

k=
√
n

|xn|2O
(

1

k2 log2 k

)

+

∞
∑

k=exp(logδ n)

O

(

log log k

k log2 k

)

= δ + o(1).

So we arrived at the upper bound. For the lower bound define

k1 =
exp

(

logδ n
)

logn
.

Theorem 3 and Theorem 2 imply that the right hand side of (11) is bigger than

γ(n)

k1
∑

k=1

[u2(k)− P(Sk = xn)] ≥

4πc1 + o(1)

log logn

k1
∑

k=1

[ 1

4πc1k log k
+O

(

log log k

k log2 k

)

]

+
4πc1 + o(1)

log logn

k1
∑

k=1

[

− 1

4πc1k log k
exp

(

− |xn|2
4c1k log k

)

]

> δ + o(1) +
O(1)

log logn
−O

(

1

log log n

)

exp

(

− |xn|2
k1 log k1

) k1
∑

k=1

1

k log k

> δ + o(1).

Thus we have proved (8). The statement follows.

Remark 1 Note that for the adaptation of the Erdős-Taylor type argument for our setting, the summa-

bility of the remainder term in the local limit theorem - i.e. Theorem 2 - was essential. The situation

was basically the same in [15], however, in a different context.

It would be interesting to find an intuitive reason for the appearance of the exponential and the

uniform distributions as limit laws. However, neither Erdős and Taylor gave explanation in [10], nor the

present author can give any. Now, we turn to the one dimensional case.

Definition 3 Let τ1 be the first return to the origin in one dimension, i.e.

τ1 = min{n > 0 : Qn = 0}

Theorem 6 P(τ1 > n) ∼ 2
√
c1√
π

√

log n
n

9



Proof. Theorem 6 can be easily proven by the usual way. One has to consider the renewal equation

n
∑

k=0

u1(k)P(τ1 > n− k) = 1,

and the identity

U(x)V (x) =
1

1− x
,

where

U(x) =

∞
∑

k=0

u1(k)x
k

V (x) =

∞
∑

k=0

P(τ1 > k)xk.

Now, the well known Tauberian theorem (Theorem XIII.5. in [11]) implies that

U(x) ∼ 1√
1− x

1√
πc1

Γ

(

3

2

)

1
√

log 1
1−x

as x → 1, thus

V (x) ∼ 1√
1− x

√
πc1

Γ
(

3
2

)

√

log
1

1− x

as x → 1. Since P(τ1 > n) is monotonic in n, the previous Tauberian theorem infers the statement.

Theorem 7 Let Nn
1 = #{k ≤ n : Qk = 0}. Then

Nn
1

√
logn√
n

converges to a Mittag-Leffler distribution with parameters 1/2 and (2
√
c1)

−1, i.e. to the distribution, the

kth moment of which is
1

(2
√
c1)k

k!

Γ
(

k
2 + 1

) .

Proof. As in the case of [6], it suffices to prove that for k fix:

∑

ni≥3,n1+n2+...+nk≤n

∏

j

1
√

nj lognj

∼ nk/2

logk/2 n

Γ(1/2)k

Γ(k/2 + 1)
. (12)

Note that Γ(1/2) =
√
π. Elementary calculations show that (12) holds for k = 1. For k > 1 define

H1 = {ni ≥
n

logn
, n1 + n2 + ...+ nk ≤ n}

H2 = {ni ≥
√
n

logn
, ∃j : nj <

n

log n
, n1 + n2 + ...+ nk ≤ n}

H3 = {ni ≥ 3, ∃j : nj <

√
n

logn
, n1 + n2 + ...+ nk ≤ n}

10



Now, split the sum in (12) into three parts, sums over Hi’s, 1 ≤ i ≤ 3.

Define sj = nj/n and observe that

1
√

nj lognj

=
1

√
sj

1√
n

1
√

log sj + logn
.

Since log sj + logn = (1 + o(1)) log n uniformly in H1, it is not difficult to deduce that

∑

(n1,n2,...,nk)∈H1

∏

j

1
√

nj lognj

∼ nk/2

logk/2 n

∫

...

∫

0<t1<t2<...<tk<1

1√
t1

1√
t2 − t1

...
1√

tk − tk−1
dt1...dtk

=
nk/2

logk/2 n

Γ(1/2)k

Γ(k/2 + 1)
.

For the sum over H2, consider the case when
√
n

logn < n1 < n
logn and ni >

n
logn for 2 ≤ i (other cases

can be treated similarly). Now, log s1 + logn > (1/2+ o(1)) logn and log si + log n = (1+ o(1)) logn for

2 ≤ i, uniformly. Thus,

∑

√

n
log n<n1<

n
log n ,ni>

n
log n :2≤i

∏

j

1
√

nj lognj

< (
√
2 + o(1))

∑

√

n
log n<n1<

n
log n ,ni>

n
log n :2≤i

∏

j

1
√

sjn logn
< 2

nk/2

logk/2 n
o(1).

For the third sum, the proof goes by induction on k. Assuming that (12) holds for k − 1, one has

∑

(n1,n2,...,nk)∈H3

k
∏

j=1

1
√

nj lognj

< k

√
n

logn

∑

n1+n2+...+nk−1≤n

k−1
∏

j=1

1
√

nj lognj

,

which is o
(

nk/2

logk/2 n

)

. (12) follows.

5 Final remark

As it was mentioned in the Introduction, in the case of Lorentz process with infinite horizon, another

type of ’recurrence’ can happen. Namely, if a scatterer is moved into a corridor (here corridor means

infinite trajectories without collision), then there are arbitrary long flights where in the periodic Lorentz

process there would not be collision, while in the perturbed one there are some. In the random walk

context, it can happen that the unperturbed walk would fly over the origin, while the perturbed one

has to stop. Note that this phenomenon is evitable if one considers finite horizon, or in the case of

infinite horizon just shrinks one of the scatterers as a perturbation. However, the same behavior (i.e.

the Brownian limit with the same scaling) is conjectured in this general perturbation, as well. The aim

11



of the following computation is to give some reason for this conjecture. As the constants do not play

important role in the sequel, they will not be computed and every appearance of C may denote different

constant.

Define

an = P((0, 0) ∈ Sn, Sn+1, (0, 0) 6= Sn)

to be the probability of the event that step n+ 1 flies over the origin. Observe that

an =
1

2
P ((Sn)1 = 0, |Xn+1| ≥ |(Sn)2|) ,

where (Sn)i denotes the ith coordinate of Sn. The local limit theorem implies an < C 1√
n logn

bn, where

bn = P (|Xn+1| ≥ |(Sn)2|) .

For the estimation of bn observe that if |(Sn)2| > dn, then bn is bounded by C
∑∞

k=dn
k−3 = O(d−2

n ). On

the other hand, the probability of |(Sn)2| being smaller than dn is roughly estimated by O(dn
1√

n log n
).

Thus

bn = O(d−2
n ) +O(dn

1√
n logn

) = O
(

(n logn)−1/3
)

,

whence

an = O
(

(n log n)−5/6
)

.

If ρn denotes the number of jumps over the origin up to time n and θn = E(ρn), then we have just

proved

θn = o(n1/6).

Note that in the case of [19] and [16] the key observation was that the time spent at the perturbed area

up to n is much smaller than
√
n. That is why it is reasonable to expect the same Brownian limit in

the case of such perturbation, where we introduce some nice further step at the time of flying over the

origin, too. Here nice means that presumably the step distribution should have some finite moment of

order ε. This could be subject of future research.
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