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SUMMARY

Bioluminescence, the creation and emission of light
by organisms, affords insight into the lives of organ-
isms doing it. Luminous living things are widespread
and access diverse mechanisms to generate and
control luminescence [1–5]. Among the least studied
bioluminescent organisms are phylogenetically rare
fungi—only 71 species, all within the �9,000 fungi
of the temperate and tropical Agaricales order—are
reported from among �100,000 described fungal
species [6, 7]. All require oxygen [8] and energy
(NADH or NADPH) for bioluminescence and are re-
ported to emit green light (lmax 530 nm) continuously,
implying a metabolic function for bioluminescence,
perhaps as a byproduct of oxidative metabolism in
lignin degradation. Here, however, we report that
bioluminescence from the mycelium of Neonothopa-
nus gardneri is controlled by a temperature-compen-
sated circadian clock, the result of cycles in content/
activity of the luciferase, reductase, and luciferin that
comprise the luminescent system. Because regula-
tion implies an adaptive function for biolumines-
cence, a controversial question for more than two
millennia [8–15], we examined interactions between
luminescent fungi and insects [16]. Prosthetic acrylic
resin ‘‘mushrooms,’’ internally illuminated by a green
LED emitting light similar to the bioluminescence,
attract staphilinid rove beetles (coleopterans), as
well as hemipterans (true bugs), dipterans (flies),
and hymenopterans (wasps and ants), at numbers
far greater than dark control traps. Thus, circadian
control may optimize energy use for when biolumi-
nescence is most visible, attracting insects that can
in turn help in spore dispersal, thereby benefitting
fungi growing under the forest canopy, where wind
flow is greatly reduced.
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RESULTS AND DISCUSSION

Circadian clocks are biological oscillators responsible for main-

taining the internal rhythms of animals, plants, fungi, and cyano-

bacteria to the alternation of external stimuli as light and temper-

ature [17]. Interestingly, bioluminescence and circadian biology

share historical antecedents. Studies of the luminescence of

the dinoflagellate Lingulodinium polyedrum (formerly Gonyaulax

polyedra), shown to be regulated by a circadian clock, laid the

foundations for many of the precepts and paradigms of chrono-

biology. These include the concept of temperature compensa-

tion and the phase response curve, the protocol used to assess

the response of the clock to resetting cues as a function of time

of day [4]. Although analysis of fungal bioluminescence ap-

peared in the modern literature contemporaneous with that of

dinoflagellates [18], the biochemical basis of this luminescence

and its possible functional/ecological significance have not

been elucidated until very recently [6, 19]. The possibility of cir-

cadian regulation was noted in the early 1960s [12, 13], but it

was quickly discounted, and in the subsequent 50 years only

data questioning rhythmicity have appeared [14, 15].

The Brazilian fungus Neonothopanus gardneri belongs to the

Omphalotus lineage [20] and displays exceptionally intense lumi-

nescence from either mycelium or basidiomes (Figures 1A–1D).

This fungus is distributed throughout of the Brazilian Coconut

Forest (Mata dos Cocais) in the states of Maranhão, Tocantins,

Goiás, and Piauı́ [20], which is a transitional biome between

Amazonian Forest and Caatinga. Fruiting bodies grow at the

base of palm trees (Attalea humilis, A. funifera, and Orbignya

phalerata).

Circadian Control of Bioluminescence
Agar plates freshly inoculated with N. gardneri mycelium were

maintained over 48 hr in a 12-hr dark/light cycle at constant tem-

perature (21�C, 25�C, and 29�C, depending on the experiment).

After this initial entrainment period, the plates were transferred

to constant darkness in a climatic chamber equipped with a

charge-coupled device (CCD) camera, and an image was digi-

tally recorded every hour over 6 days. Analyses of these pictures
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Figure 1. Circadian Control of Fungal Bioluminescence in Neonothopanus gardneri

(A–D) Mushroom of Neonothopanus gardneri (A) under illumination, and (B) in the dark. The inset shows a rover beetle magnified image. (C) Minimum and (D)

maximum bioluminescence from the mycelium of N. gardneri during photographical studies of light emission oscillation are shown.

(E) Bioluminescence profile from the mycelium after 48-hr entrainment period at 21�C, 25�C, and 29�C over a 6-day experiment confirms temperature

compensation of circadian period length (error bars indicate ±SD; n = 3).

(F) Luminescence profile from luciferin-, reductase-, and luciferase-rich extracts (error bars indicate ±SD; n = 3) obtained from mycelium after 48-hr entrainment

period at 25�C and over 48 hr (see more details in the Experimental Procedures). Luciferin light emission is multiplied by 1,000.

Photos were obtained with a Nikon D3100, equipped with AF-S Micro Nikkor 60 mm f/2.8G ED lenses (mushrooms: ISO 6400, f/5.6, 1/40 s [under headlamp

illumination] and 15 s [in the dark]; cultures: ISO 12800, f/4.5, 30 s). Mycelium of N. gardneri was cultivated in 2.0% agar medium containing 1.0% sugar cane

molasses and 0.10% yeast extract.
by imaging software confirmed that the light emission from the

bioluminescent mycelium oscillates in a circadian rhythm of

�22 hr at 25�C (Figure 1E), with the peak phase of intensity

occurring about 10 hr after the light-to-dark transfer and at circa-

dian intervals thereafter. Circadian oscillators are temperature

compensated; i.e., they maintain an �24-hr period whenever

the organisms are grown at warmer or cooler temperatures

across the physiological range [17]. When the experiments

were repeated at 21�C and 29�C, the period was only slightly

changed; comparison of the periods at different temperatures al-

lowed calculation (http://www.physiologyweb.com/calculators/

q10_calculator.htm) of a Q10 of 1.04 for the rhythm, confirming

its temperature compensation. Interestingly, these circadian

period lengths of less than 24 hr are similar to those reported

for Neurospora crassa, the non-luminescent ascomycete that

is a prominent model system for analysis of the molecular basis

of rhythms [21].

Biochemical Basis of Circadian Bioluminescence

Luciferases (enzymes that catalyze the light emission in luminous

organisms) have successfully been employed as reporters to

monitor a wide array of biological processes, including rhythms.
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Fungal bioluminescence depends on four components, namely,

a substrate (luciferin), a soluble NAD(P)H-dependent reductase,

a membrane-bound oxygenase (luciferase), and oxygen [19].

Active luciferin can be extracted from cultivated mycelium using

boiling citrate buffer under argon atmosphere to prevent oxida-

tion. The enzymes can also be partially purified from the culti-

vated mycelium using cold phosphate buffer, and the reductase

and the luciferase subsequently separated by ultracentrifugation

because the luciferase is an insoluble membrane protein. Light

emission can be obtained in vitro by mixing of the hot extract

(luciferin source) and the cold extract (reductase/luciferase

source) and finally by addition of NADPH to trigger the reaction

[19] (see more details in the Experimental Procedures). We

took advantage of the natural occurrence of bioluminescence

in this fungus and used its own luciferase, reductase, and lucif-

erin to investigate the molecular basis of the oscillation in

bioluminescence.

Cultures were entrained as above through 2 days of 12-hr

dark/light cycles prior to release into constant darkness, and

the specific activity of the reductase and luciferase and

the concentration of luciferin were measured every 6 hr over
64–968, March 30, 2015 ª2015 Elsevier Ltd All rights reserved 965
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Figure 2. Field Experiments with Acrylic

Resin Mushrooms

(A) Acrylic resin mushroom equipped with a green

LED and covered with glue under illumination and

in the dark.

(B) Traps were attached to the base of juvenile

palms of Attalea speciosa in N. gardneri abundant

areas at night.

(C) Emission spectra of LED lights andN. gardneri.

(D) Main specimens captured in glue from light

traps or controls (LED turned off) over five nights

(19 LED traps and 19 controls). See the Experi-

mental Procedures for additional details. The

dipteran flies (p = 0.00) and coleopteran beetles

(p = 0.02) were statistically significant (binomial

test, p < 0.05), whereas the Hemiptera (p = 0.06)

and Hymenoptera (p = 0.09) were borderline when

compared to the control.
48 hr (Figure 1F). The levels of all three biochemical compo-

nents clearly cycle with a period of about 1day, reaching

maximum intensity about 6 hr after the light-to-dark transfer

and at �22-hr intervals thereafter; the robust 3- to 4-fold ampli-

tude provides a molecular basis for the observed rhythm in

luminescence.

Assessing the Adaptive Significance of Fungal
Bioluminescence
Altogether, these data show that N. gardneri displays a clearly

sustained rhythm in bioluminescence with a steady period of

about 1 day whose length is temperature compensated and

whose phase is set by the entraining cues of a prior light/dark

cycle. While these characteristics are sufficient to define the

rhythm as circadian, they do not speak to the adaptive signifi-

cance of rhythmic bioluminescence to the fungus. Biolumines-

cence per se may fulfill a variety of bio- and ecological functions

depending on the luminous organism, including prey attraction,

aposematism, illumination, defense, attack, communication,

sexual courtship, or as a simple metabolic byproduct [1]. We

considered luminescence as a metabolic byproduct to be un-

likely given the existence of a specific luciferin and luciferase

and instead considered possible significance in light of the

biology of N. gardneri and fungi in general.

All fungi require help in getting from place to place to colonize

new substrates; some achieve this through the use of winds that

can carry lightweight spores, and others rely on animals, espe-

cially within highly stratified canopy forests, where wind flow

can be restricted near to the ground [22]. In the case of arthro-

pods, spore dispersal can occur by the transportation of spores

adhered to the body (ectozoochory) or inside the gut of the ani-

mal (endozoochory) [23, 24]. Moreover, spore dispersal in can-

opy forests is greatest at night or early in themorning, when envi-

ronment humidity and spore germination are highest [22]. Hence,

it is reasonable to hypothesize that nocturnal transport of spores

by arthropods provides an effective means of dispersal and

grants some advantage to fungi, especially in dense forests.
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Fungal bioluminescence is too dim to

be perceived by animals during the day

but is readily perceived at night (even
from smaller and less bright mushrooms than N. gardneri), so

rhythmic control luminescence would be an attractive means

to eliminate wasting energy through daytime luminescence.

Work from nearly a quarter century ago suggested that in-

sects can be attracted to bioluminescence [16], and indeed,

N. gardneri basidiomes are often seen infested by staphilinid

rove beetles (Figure 1, inset). Given this, we tested the hypothe-

sis that bioluminescence of N. gardneri would attract insects

capable of dispersing spores. Acrylic resin ‘‘mushrooms’’ were

fabricated and equipped with a green light-emitting diode

(LED) on the base of stem such that the size, emission spectrum,

and intensity of luminescence corresponded to values typical for

N. gardneri basidiomes (Figure 2); non-luminescent ‘‘mush-

rooms’’ lacking the LED provided negative controls. When these

were placed in the forest habitat of N. gardneri, we saw that he-

mipterans (true bugs), dipterans (flies), hymenopterans (wasps

and ants), and other coleopterans, in addition to rove beetles,

were captured by the light traps at greater numbers than seen

with the control traps (LED turned off). All orders of insects

here reported are capable of perceiving green light [25]. Hence,

our data are consistent with the hypothesis that nocturnal clock-

controlled bioluminescence rendersN. gardnerimore noticeable

to insects and thus provides a selective advantage in spore

dispersal not afforded to non-luminescent species.

EXPERIMENTAL PROCEDURES

Cultures, Mycelium Cultivation, and Circadian Measurements

Cultures of N. gardneri (MycoBank MB519818) were isolated from fruiting

bodies collected in the Brazilian Coconut Forest located in the municipality

of Altos, Piauı́ [20]. The mycelium was cultivated on Petri dishes (100 mm

diameter) with medium containing 1.0% (w/v) sugar cane molasses

(82.2�Bx, Pol 56%) and 0.10% (w/v) yeast extract (Oxoid) in 2.0% (w/v) agar

(Oxoid) [26]. The mycelium was inoculated in the center of the Petri dish on

a piece of sterilized dialysis cellulose membrane (3 3 3 cm, Sigma-Aldrich)

overlying the agar medium. The dialysis membrane permits prompt harvesting

of the entire sample without contamination of the culture medium [26]. After

inoculation, the cultures were maintained routinely in a climatic chamber

(Percival) for 4 days. Different temperatures were used depending on the set



of experiments. Circadian rhythms experiments in which bioluminescence

from the mycelium was tracked using a CCD camera were performed at

21�C, 25�C, and 29�C as described below, whereas experiments with time-

dependent extraction of luciferin, luciferase, and reductase were carried out

at 25�C. The Q10 of the rhythm was calculated from the formula below, where

T1 and T2 are the temperatures at which the rhythm was measured and R1 and

R2 are the corresponding rates. It should be noted that these are rates, not pe-

riods, rate (or frequency) being the inverse of period; periods at 21�C and 29�C
were used for the calculation.

Q10 =

�
R2

R1

�� 10
T2�T1

�

Partial Purification of Luciferin, Luciferase, and Reductase

So that partially purified luciferin could be obtained, three dialysis membranes

containing the mycelium were removed from the medium and cut in small

pieces using a scalpel. Luciferin was extracted from this material using a

Potter-Elvehjem homogenizer in 1.5 ml of hot (80�C) extraction buffer A

(100 mM citrate [Merck; pH 4.0], 1 mM 2-mercaptoethanol [Sigma], and

5 mM EDTA [Sigma]). Afterward, the homogenate was centrifuged at

5,000 3 g for 5 min at 4�C and the pellet was discarded, whereas the super-

natant, the source of luciferin, was kept in ice. The entire process was carried

out under ice and argon atmosphere whenever possible.

Partial purification of the enzymes was conducted by similar extraction of

mushrooms, but using cold buffer B (100mMphosphate [pH 7.6], 1mM2-mer-

captoethanol, and 5 mM EDTA). After the centrifugation, the supernatant con-

taining both the luciferase and the reductase was ultracentrifuged (Hitachi

RP50T-2, rotor P50AT2-716) at 198,0003 g for 60min at 4�C. The supernatant
contains the reductase and the pellet, the luciferase. The pellet was re-dis-

solved in 1.5 ml of extraction buffer B. Partially purified luciferin, luciferase

(1.0–1.5mg/ml), and reductase (1.0–1.5 mg/ml) were kept on ice for immediate

use or stored on liquid nitrogen. Proteins concentrations were determined us-

ing the Bradford assay [27].

Light-Emission Assays

The luminescent reactions were carried out following the procedure described

in literature [26]. In summary, each assay was composed by 100 ml of lucif-

erase, 100 ml of reductase, 50 ml of luciferin (all components were partially

purified as described in the reference), 50 ml of 1 mg/ml solution of BSA

(Sigma-Aldrich), and 50 ml of 70 mM NADPH (nicotinamide adenine dinucleo-

tide phosphate sodium; Sigma-Aldrich) to trigger the reaction. The light emis-

sion was recorded during 1 min using a tube luminometer (Berthold, Sirius

FB15) at 25�C. All measurements were performed in triplicate.

Circadian Bioluminescence Rhythm of the Fungus

N. gardneri—Photographical Studies

The cultures were grown under the conditions described above in a 12-hr

dark/light cycle over 48 hr in an incubator equipped with a VersArray 1300B

liquid-nitrogen-cooled CCD camera system from Princeton Instruments. The

camera was housed within a Percival incubator under conditions of constant

darkness and temperature (21�C, 25�C, or 29�C) and was controlled with the

WinView software (Princeton Instruments). Beginning on the third day, the

light/dark cycle was terminated and the cultures were maintained at total

darkness for an additional 6 days, during which bioluminescence was moni-

tored. Acquisition times were set to 10 min with a 50 min delay between im-

ages (one frame per hour). Data from the image series were extracted with

a customized macro ([28]; L.F. Larrondo, A. Stevens-Lagos, V.D. Gooch,

J.J.L., and J.C.D., unpublished data) developed for ImageJ (http://rsbweb.

nih.gov/ij/) and customized with an Excel interface. Although bioluminescence

data can be collected from an entire culture (e.g., [28]), differences in period-

icity between older and newer regions of a colony (e.g., [29]) can lead to de-

synchronization and the appearance of rhythm dampening within a colony.

To avoid this, the customized Excel macro allowed collection of luminescence

from regions of interest, in this case comprising concentric rings surrounding

the point of inoculation, analogous to the regions of interest within growth

tubes described in [28]. Data were analyzed using a suite of analysis programs

designed for analysis of behavioral and molecular cycles including biolumi-
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nescence [30]: as recommended [30], chronic trends were first removed to

yield a stable baseline; statistically valid rhythmicity was then confirmed by

periodogram analysis, and period estimates were derived using maximum en-

tropy spectral analysis (MESA) [30] as reported in Figure 1E.

Circadian Rhythm Effects on Luciferin, Luciferase and Reductase

Luminescent Specific Activity

The cultures were cultivated (same conditions described above) in a 12-hr

light/dark cycle during 4 days in an incubator at 25�C. On the fifth day, the

light/dark cycle was interrupted and the rhythm experiments were initiated.

During the 48-hr experiment, the cultures were kept in total darkness. Circa-

dian control of luciferin, luciferase, and reductase was determined by assay

of each one of the components separately from extracts every 6 hr, using

stock solutions of the other two components. For example, analysis of circa-

dian control of luciferase variation was accomplished by using 24 Petri

dishes of mycelium: three dishes for every 6 hr over 48 hr. The luciferin con-

centration and the reductase activity were maintained constant during the

luciferase experiment by using the same batch of frozen pre-purified luciferin

(50 ml) and reductase (100 ml) samples in 350 ml total volume assay. Analo-

gous methodology was used for monitoring the luciferin concentration and

the reductase activity.

Ecological Studies with Acrylic Resin Mushrooms

Nocturnal collection of insects directly from N. gardneri mushrooms and LED

light-trap experiments were performed in the Brazilian Coconut Forest (Mata

dos Cocais) biome in Fazenda Cana Brava, municipality of Altos, Piauı́, Brazil

(5�5039.500 S, 42�23012.8200 W) during the rainy season of March 2013. Acrylic

models of N. gardneri were equipped with one 530 nm LED and covered with

scentless glue (Tangle-Trap Stick Coating, Tanglefoot). Experiments in the

field were conducted by setting the voltage knob of the LED to the minimum

value so that the light emitted by the acrylic mushrooms approximated that

emitted by real mushrooms (see below). Approximately four lighted traps

and four control traps (with the LED turned off) were placed at sundown and

collected before the sunrise over five nights in forest areas where

N. gardneri is abundant. The insects captured by the glue were removed

from the traps and stored in 70% ethanol after each night. Traps were then

cleaned and prepared for reuse. Over five nights of experiments, 19 light traps

and 19 control traps (n = 19) were used, and a total of 42 insects from light traps

and 12 from controls were captured. Sorting and identification of insects was

performed with the help of the entomologists Professors Silvio S. Nihei and

Sergio Vanin from Instituto de Biologia, Universidade de São Paulo. Total

arthropod counts were compared between lighted and control traps with the

binomial test for significance, and the difference was considered significant

if p < 0.05. As the numbers indicate, we collected very few insects in the acrylic

mushroom traps, and all collected insects were consumed during the identifi-

cation process.

Efforts were made to keep the LED light at levels comparable to that

emitted by mushrooms, and both would easily be perceived as bright by

nocturnal insects. Because the insects are night active, it follows that they

must have accommodations to allow them to see at night. In fact, night-

active insects, including beetles and ants, undergo dark adaptations that

increase the sensitivity of the rhabdom and change the structure of the

ommatidia, allowing even diurnal insects to visually navigate at night under

extremely low light levels [31, 32], conditions under which bioluminescence

by comparison may appear quite bright. However, the absolute amount of

‘‘average’’ bioluminescence in a mushroom in the field has been hard to es-

timate. Anecdotally, it is well known by the local inhabitants and has been

observed by authors of this manuscript (C.V.S., H.E.W., and A.G.O.) that

the amount of bioluminescence emitted by N. gardneri varies greatly de-

pending, of course, on the size and age of the fruiting body but also on

the ambient humidity, optimal conditions being nighttime after a hot day

with an afternoon rain storm and a light evening/night breeze. These were

the conditions in the forest during the rainy season in March 2013 when

the experiments described in the article were performed.

Bioluminescence and LED Emission Spectra

Bioluminescence ofN. gardnerimushroom and LED emission spectra were re-

corded using a Hitachi F-4500 spectrofluorometer set at 400 V PMT voltage
64–968, March 30, 2015 ª2015 Elsevier Ltd All rights reserved 967
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and emission slit 1.0 nm (LED) 700 V PMT voltage and emission slit 20 nm

(mushroom).
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