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ABSTRACT

Bioluminescence is a form of chemiluminescence generated
by luminous organisms. Luminous taxa have currently been
reported from about 800 genera and probably over 10 000
species in the world. On the other hand, their bioluminescent
systems, including chemical structures of luciferins/chro-
mophores and the genes encoding luciferases/photoproteins,
have been elucidated from only a few taxonomic groups, for
example beetles, bacteria, dinoflagellates, ostracods and some
cnidarians. Research efforts to understand unknown biolumi-
nescence systems are being conducted around the world, and
recently, for example, novel luciferin structures of luminous
enchytraeid potworms and fungi were identified by the
authors. In this study, we review the current status and per-
spectives, in the context of postgenomic era, of most likely
novel but less-revealed bioluminescence systems of ten
selected organisms: earthworm, parchment tubeworm, fire-
worm, scaleworm, limpet, millipede, brittle star, acorn
worms, tunicate and shark, which indeed are the next focus
of our international collaboration.

INTRODUCTION
Bioluminescence is visible light produced by a chemical reaction
in living organisms. Basically, it is explained to be the oxidation
process of “luciferin” (Fig. 1) with molecular oxygen by “lu-
ciferase.” Here, “luciferin” is a general term for organic com-
pounds that exist in luminous organisms and provides the energy
for light emission by being oxidized, and “luciferase” is a gen-
eral term for enzymes catalyzing the oxidative light-emitting
reaction of luciferin in luminous organisms (by the definition
from Shimomura, 2006) (1). Some bioluminescence systems do
not conform to explanation by luciferin–luciferase reaction. For
example, the luminous hydromedusa Aequorea emits light by

intramolecular reaction of the protein named aequorin. This reac-
tion does not require molecular oxygen and is triggered by the
binding of calcium ions. Aequorin is consumed by the reaction;
thus, this process cannot be assigned to the category of enzy-
matic reaction. As we show in the following sections, the biolu-
minescence of the parchment tubeworm Chaetopterus,
scaleworms, millipede Motyxia and bivalve Pholas occurs in a
similar manner, and the proteins of this kind are termed “photo-
protein.” Photoprotein is currently defined as a general term for
proteins that occur in the light organ of a luminous organism
and are capable of emitting light in proportion to the amount of
the protein (1). Photoproteins contain a prosthetic group bound
to apoprotein playing a role of luciferin, such as coelenterazine
(Fig. 1A) in aequorin; thus, photoproteins can be regarded as a
stable luciferin–luciferase complex (1).

Bioluminescent organisms are found in 800 genera of ca. 13
phyla (2–5). Each group uses an independent bioluminescence
system; in other words, they evolved their bioluminescent traits
independently in their lineages. The history of modern views on
bioluminescence mechanism dates back to the Dubois’ “classic
luciferin–luciferase experiments,” which uses heat-stable and
heat-unstable components of luminous organisms to reconstitute
light production by mixing together, for the luminous piddock
Pholas dactylus (Fig. 2) and click beetle Pyrophorus (6). To
date, the chemical structures of luciferin/chromophore were
determined and the genes of luciferase/photoprotein were isolated
for some major bioluminescent organisms (e.g. bacteria, ostra-
cods, beetles, dinoflagellates, Pholas and some jellies) (1).
Regarding luciferin chemistry, since the chemical structure of
firefly luciferin was determined in 1961–1963, seven different
types of luciferin have been identified: firefly luciferin, bacteria
luciferin (long-chain aldehyde and FMNH2), cypridinid luciferin,
earthworm luciferin, coelenterazine-type luciferin (incl. Watase-
nia preluciferin), dinoflagellate luciferin and krill luciferins
(tetrapyrroles) and Latia luciferin (Fig. 1C) (7). Actually, the last
structural characterization of novel luciferin, dinoflagellate luci-
ferin, dates back 25 years, but recently the author’s group added
two novel luciferin structures in this list: enchytraeid worm luci-
ferin (8) and fungi luciferin (7,9). On the other hand, there are
still many luminous organisms in which bioluminescence
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systems are mechanistically novel but less studied, especially in
inconspicuous worms and slugs.

In this study, we review ten selected bioluminescence sys-
tems, which are “least studied” and not fully explored biolumi-
nescence systems, especially focusing on the recent progress
after Shimomura’s comprehensive book for chemistry and
biochemistry of bioluminescence was published in 2006 (1).
These worms and slugs may not be good-looking, but potentially
have novel bioluminescence systems useful for next biotechno-
logical application tools. We do not deal the perfectly known
systems and the almost unknown systems. Indeed, the organisms
examined in this review are the next targets for us to solve. We
also do not approach the biological function and evolution of the
bioluminescence. These aspects have been reviewed in the recent
papers (4,5,10).

ANNELIDA
The phylum Annelida has been traditionally classified into three
extant classes, Polychaeta (bristle worms), Oligochaeta (earth-
worms and potworms) and Hirudinea (leeches). Luminous spe-
cies have been reported from five families in oligochaetes (11)
and ten families in polychaetes (4), but none from Hirudinea. In
these various luminous annelids, we focus on the earthworms
(Acanthodrilidae, Octochaetidae, Megascolecidae and Lumbrici-
dae) and potworms (Enchytraeidae) from Oligochaeta, and

parchment tubeworm (Chaetopteridae), fireworms (Syllidae) and
scaleworms (Polynoidae) from Polychaeta.

Earthworms and potworms

Luminous earthworms discharge luminescent fluid upon mechani-
cal stimulation. The mechanisms of earthworm luminescence have
been best studied in the North American earthworm Diplocardia
longa (Acanthodrilidae), wherein the luciferin was identified as N-
isovaleryl-3-aminopropanal (12), the luciferase was purified as
300-kDa heterotrimeric Cu2+ metalloprotein and the luminescence
reaction was triggered by hydrogen peroxide (13,14).

The bioluminescence of other earthworm species, including
the genera Diplotrema, Microscolex (Acanthodrilidae), Octochae-
tus (Octochaetidae), Fletcherodrilus, Pontodrilus and Spencer-
iella (Megascolecidae), is also triggered by hydrogen peroxide,
and their luminescence can be further enhanced by the addition
of either D. longa luciferases or luciferin (whereas the enhance-
ment of the luminescence in Diplotrema and Fletcherodrilus by
D. longa luciferin was negative) (15,16). These results indicated
that the bioluminescence mechanisms in these three families are
basically identical.

A novel type of luciferin structure was recently determined in
the Siberian luminous potworm Fridericia heliota (Enchytraei-
dae) (7,8). Cross-reaction test of luciferin–luciferase between
F. heliota and Microscolex phosphoreus (Fig. 3) was negative
(V. N. Petushkov, personal communication). Another Siberian
enchytraeid potworm Henlea sp. is also luminous, but the
luciferin–luciferase cross-reaction between this species and F. he-
liota was negative (17).

It has been suggested that the vast amount of riboflavin stored
in coelomic fluid plays an important role in the luminescence of
the European luminous earthworm Eisenia lucens (Lumbricidae)
(18,19), but involvement of riboflavin in the bioluminescence
reaction was not demonstrated.

Luciferase genes have not been isolated from any luminous
earthworms and potworms.

Parchment tubeworms

Chaetopterus variopedatus (Fig. 4) is widely distributed in the
world, although a recent molecular phylogenetic analysis sug-
gested its status as a species complex (20). It is a filter feeder,
living in a U-shaped tube in the mud of marine shallow water,
both ends of which stick out of the seafloor. Upon physical
stress, the worm emits a flash of blue light and also secretes
glowing luminescent slime when disturbed more aggressively
(20).

In the 1960s, Shimomura and Johnson showed that biolumi-
nescence of Chaetopterus “tissue” extracts peaks at 453–
455 nm and is enhanced in the presence of Fe2+ and hydrogen
peroxide (1,21,22). Based on their analyses, Shimomura sug-
gested the involvement of a photoprotein in Chaetopterus lumi-
nescence and stated that the luminescent system of purest
prepared photoprotein needs five factors: oxygen, Fe2+, peroxide
and two unknown cofactors (1). The photoprotein was also
crystallized by ammonium sulfate precipitation, but the protein
structure was not determined. The molecular mass of the photo-
protein was measured to be 130 kDa and 184 kDa before and
after crystallization, respectively (1). Fluorescence of the puri-
fied photoprotein is characterized by an emission peak at 453–

Figure 1. (A) Coelenterazine, (B) dehydrocoelenterazine, (C) Latia luci-
ferin, (D) Latia oxyluciferin, (E) lumazines in the fireworm Odontosyllis
cf. undecimdonta, (F) fluorescence compound in the cuticle of the lumi-
nous millipede Motyxia sequoiae, (G) 2,6-dibromophenol, (H) 2,3,5,6-tet-
rabromohydroquinone from acorn worms.
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455 nm, which matches its bioluminescence spectrum. The bio-
luminescence reaction does not significantly change the fluores-
cence spectrum (1).

Recently, Deheyn’s group focused on the luminescent “mu-
cus” of Chaetopterus (20,23). Classic luciferin–luciferase analy-
sis of the mucus was negative. Fluorescence spectrum measured
immediately after cessation of luminescent reaction revealed
peaks at 461 and 519 nm. After 2-h incubation at room tempera-
ture, 461-nm peak nearly disappeared, while a single peak at
525 nm persisted. According to the LC-MS analyses, a 525-nm
fluorescent peak corresponds to riboflavin. They suggested that
the Chaetopterus luminous mucus contains a photoprotein, and
riboflavin (or its derivative) is the light emitter of biolumines-
cence (20,23).

Fireworms

Bioluminescence in Polychaeta is also recorded in some genera of the
family Syllidae, and the most well-known taxa are the marine “fire-
worm” Odontosyllis spp. Males and females release a luminous
secretion for mating. The secretion is also observed upon mechani-
cal stimulation, which probably functions to deter predation (24).

A classic luciferin–luciferase reaction using the whole body of
Odontosyllis enopla and Odontosyllis phosphorea has been
demonstrated (25). The luciferin of the Bermudian O. enopla was
extracted with boiling ethanol and purified by several precipita-
tions and chromatography steps (26). The purified O. enopla luci-
ferin is colorless and nonfluorescent, and it emits light in the
presence of Mg2+, molecular oxygen and crude luciferase. The
oxyluciferin produced by this luminescence reaction has a fluores-
cence peak at 507 nm, which is almost identical to the biolumines-
cence spectrum in vitro and in vivo (26). The chemical structure of
the luciferin and oxyluciferin has not been determined.

Bioluminescence of O. phosphorea collected in San Diego
was re-examined by Deheyn and Latz (27). The classic
luciferin–luciferase reaction of the mucus was not fully reconsti-
tuted, and the mucus persisted intense bioluminescence under
anoxic conditions. Based on these results, they suggested that the

luminescence of the secreted mucus involves a photoprotein
rather than luciferin–luciferase reaction and that this mechanism
is different from that of internal flash light production.

Several derivatives of 6-propionyllumazine (Fig. 1E) were
identified in the extract of crude luciferin and oxyluciferin from
the Japanese luminous Odontosyllis sp. (near Odontosyllis undec-
imdonta; H. Kakoi, personal communication) (28,29) (Fig. 5).
The relationship between luciferin/oxyluciferin and these luma-
zine compounds is not clear.

Scaleworms

Several species of the scaleworm (Polynoidae) emit light from
elytra, and the scales are arranged in two rows on a dorsal side,
by mechanical stimulation. With further irritation, the elytra
detach from the worm’s body probably to distract and confuse
predators.

The bioluminescence of the luminous polynoid Acholo€e squa-
mosa (formerly, Acholo€e astericola) requires molecular oxygen,
but the luciferin–luciferase reaction has never been demonstrated
(25,30). Later, a temperature- and trypsin-sensitive protein was
isolated as a photoprotein from the luminous scales of polynoid
Malmgrenia lunulata (formerly, Harmotho€e lunulata) by chro-
matography and named as polynoidin (originally, polyno€ıdin)
(31). The purified M. lunulata polynoidin was nonfluorescent
either before or after luminescence, and the molecular mass was
estimated as 500 kDa by gel filtration chromatography (31) and
65 kDa by SDS-PAGE (32). The light emission could be
induced upon the addition of sodium dithionite, xanthine–xan-
thine oxidase system and Fenton’s reagent (hydrogen peroxide
and Fe2+) (31), suggesting the involvement of radical anion
superoxide in the reaction. The emission spectrum of the
M. lunulata polynoidin peaks at 510 nm, which is close to the
in vivo emission peak (31). Recently, other polynoidin proteins
were purified up to 80–90% homogeneity from four polynoid
species, Harmotho€e imbricata (Fig. 6), Harmotho€e areolata,
Lepidonotus squamatus and Lepidonotus clava (33). Their
molecular sizes were estimated to be about 65 kDa by ultracen-
trifugation in sucrose medium (33). Interestingly, Lepidonotus
species are regarded to be nonbioluminescent, but their poly-
noidins emitted light by xanthine–xanthine oxidase system (33).

Nicolas et al. showed that the detached scales of M. lunulata
exhibit green fluorescence after luminescence, and the fluorescent
entity is riboflavin by TLC analysis (31). They suggested that
radical anion superoxide involved in the bioluminescence reac-
tion is generated by the oxidation of reduced riboflavin in the
presence of Ca2+ ion (31). On the contrary, a fluorescent sub-
stance generated by luminescence reaction of the scales was iso-
lated as a complex of low molecular mass protein and
chromophore from A. squamosa (34). The fluorescence emission
spectrum was similar to the in vivo bioluminescence (kmax,
520 nm), suggesting that the fluorescent substance is likely the
reaction product of the bioluminescence (34).

GASTROPODA
The phylum Mollusca contains a large number of luminous spe-
cies, especially in the class Cephalopoda (squids and octopus).
In contrast, small numbers of luminous species are recorded
from the other molluscan classes Bivalvia and Gastropoda. The
bioluminescence system of the Mediterranean bivalve Pholas

Figure 2. Origin of the modern bioluminescence chemistry and bio-
chemistry. Engraving of the piddock Pholas dactylus in the historical
book “La Vie et la Lumi�ere” by Rapha€el Dubois, 1914.

Photochemistry and Photobiology, 2017, 93 407
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dactylus has been well studied: The gene of the photoprotein
pholasin was isolated (35), and the chromophore was identified
to be dehydrocoelenterazine (Fig. 1B) (36). Here, we focus on
the bioluminescence of gastropods as a least studied group in
Mollusca.

Gastropod bioluminescence is observed in some marine nudi-
branchs, tiny marine snails Angiola, Hinea and Melanella, the
land snail Quantula striata and the freshwater limpet Latia neri-
toides (2,5). Studies on the bioluminescence mechanisms in these
luminous gastropods are very limited except for L. neritoides.

New Zealand freshwater limpet (Latia neritoides)

The freshwater limpet L. neritoides (Fig. 7) is endemic in the
North Island of New Zealand, where it is widely distributed in
shallow, fast-flowing streams and some lakes (37). Notably, this
species is the only luminous animal known to date that spends
its entire life cycle in freshwater. It clings to the submerged

rocks and logs, and discharges a yellow-green luminescent
mucus when disturbed.

A classic luciferin–luciferase reaction in L. neritoides was
demonstrated by Bowden (38). Latia luciferin was purified as a
hydrophobic colorless liquid, and the chemical structure was
determined to be (E)-2-methyl-4-(2,6,6-trimethyl-1-cyclohex-1-
yl)-1-buten-1-ol formate (Fig. 1C) (39). In the presence of Latia
luciferase, unknown purple protein and molecular oxygen, Latia
luciferin is converted to oxyluciferin (Fig 1D) with a yellow-
green light emission (kmax = 536 nm) (40). However, the pres-
ence of the purple protein was considered to be inessential for
the bioluminescence reaction (1). Shimomura argued in his
book that the function of the purple protein was to serve as an
activator or enhancer of the light-emitting reaction (1). Latia
luciferase and purple protein were purified, and their molecular
masses were determined to be 173 and 39 kDa, respectively
(40). Ohmiya et al. suggested that this luciferase is a homo-
hexameric glycoprotein comprising 31.6-kDa subunits (41). The

Figure 3. Earthworm Microscolex phosphoreus. The heads are shown on the left side of these photographs. Photograph by Yuichi Oba.

Figure 4. Parchment tubeworm Chaetopterus variopedatus under illumination (A) and its bioluminescence along the body in parapodia, mucous gland
and tail (B). Photograph by Anderson G. Oliveira.

Figure 5. Fireworm Odontosyllis cf. undecimdonta. The heads are shown on the left side of these photographs. Photograph by Yuichi Oba.
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light emitter of the Latia bioluminescence was not determined,
but the results above suggest that the chromophore is bound to
luciferase protein. Shimomura predicted that the light emitter is
a flavin or a flavin-like compound, because Latia luciferase
showed fluorescence in KCN solution and the emission spec-
trum is close to the bioluminescence spectra and also to the flu-
orescence of flavins (1).

DIPLOPODA
Arthropoda contains huge numbers of luminous species, espe-
cially in crustaceans and hexapods, which constitute about 25%
of all genera comprising luminous species (5). On the other
hand, a few luminous species have been reported only in Chilo-
poda (centipedes) and Diplopoda (millipedes) if crustaceans and
hexapods are excluded (2). Bioluminescence systems of some
crustaceans and insects, such as ostracods, copepods, deep sea
shrimp Oplophorus, fireflies and click beetles, have been well
studied (1). On the other hand, the mechanistic studies on cen-
tipedes and millipedes luminescence are very limited. In this sec-
tion, we focus on luminous millipede Motyxia sequoiae as a
least studied case.

Sierra luminous millipedes

Only 11 of 12 000 described millipede species are biolumines-
cent, nine of them belonging to the genus Motyxia (Xystodesmi-
dae) (42) (Fig. 8). There are two more luminous species
described, the tropical cosmopolitan Paraspirobolus lucifugus
(Spirobolellidae) (43,44) and New Caledonian Dinematocricus
sp. (Rhinocricidae) (45), but the biochemistry of their biolumi-
nescence has not been studied.

Motyxia sequoiae (Syn. Luminodesmus sequoiae) is a milli-
pede of about ~35 mm length and ~7 mm width, distributed
across the southern Sierra Nevada Mountains (46). Its biolumi-
nescence is greenish blue peaking around 495 nm and emitting
spontaneously with 20–40% oscillation of intensity (47). Physical
stimulation triggers light emission of higher intensity. The cuticle
of M. sequoiae exhibits a greenish-blue fluorescence, as for some
nonluminous millipedes. Interestingly, the emission maximum of
the M. sequoiae cuticle is similar to its bioluminescence (48).

In the 1980s, Shimomura proposed the involvement of a photo-
protein to explain M. sequoiae bioluminescence (49). The photo-
protein was purified by chromatography, and the molecular mass
was estimated to be 60 kDa by gel filtration analysis. The protein
emits light in the presence of ATP, Mg2+ and oxygen, and the
spectral maximum matches exactly to the in vivo luminescence
(49). Later on, the same author determined the molecular mass of
photoprotein to be 104 kDa by SDS-PAGE analysis and proposed
the involvement of a porphyrin chromophore with maximum
absorbance around 410 nm in the bioluminescence reaction (50).
The chromophore separated from purified photoprotein by HCl
treatment showed fluorescence peak at 595 and 650 nm under
acidic condition, which strikingly matches the in vivo biolumines-
cence. Further experiments demonstrated the porphyrin does not
contain Fe3+ (50). Shimomura suggested that the porphyrin present
as a chromophore in the photoprotein is the emitter in biolumines-
cence of Motyxia millipedes.

Twenty years later, a greenish-blue fluorescent compound
from the cuticle of M. sequoiae was determined to be 7,8-dihy-
dropterin-6-carboxylic acid (emission max, 505 nm) (Fig. 1F)
together with pterin-6-carboxylic acid (emission max, 450 nm)
(48). As the fluorescence peak of the former compound is close
to that of in vivo and in vitro luminescence of M. sequoiae, Kuse
et al. suggested it as the light emitter. It is of note that same
fluorescent compounds were also isolated from the cuticle of
the nonluminous xystodesmid millipede Parafontaria laminata
armigera (51).

ECHINODERMATA
The phylum Echinodermata consists of five extant classes: Cri-
noidea (sea lilies), Ophiuroidea (brittle stars), Asteroidea (star-
fishes), Echinoidea (sea urchins) and Holothuroidea (sea
cucumbers) (2,4). Luminous species are found in all classes
except Echinoidea, and there are only few studies on their biolu-
minescence systems except for brittle stars.

Brittle stars

Brittle stars are animals belonging to the class Ophiuroidea of
the phylum Echinodermata. Currently, about 2000 ophiuroid spe-
cies have been recorded worldwide (52), of which about 70 spe-
cies are recognized as luminous (53,54).

The luminescence color of the brittle stars is mostly green,
but blue luminescence has been reported in some species (53).
These animals emit flashes of light along the arms by
mechanical stimulation (Fig. 9). Some species eject luminous
mucus (54).

In 1986, Shimomura proposed the involvement of a photo-
protein in the bioluminescence of the luminous brittle star
Ophiopsila californica (55). He purified the photoprotein,
Ophiopsilin (53), whose fluorescence is greenish blue
(kmax = 482 nm) by UV irradiation and emitted the same green
light when triggered by H2O2. The molecular mass of the pho-
toprotein was estimated to be approximately 45 kDa by gel fil-
tration (1,55). Shimomura also found the presence of another
green fluorescent substance in the extract and suggested its
involvement in the in vivo green luminescence as the fluores-
cence emission spectrum matched to in vivo bioluminescence
(broad peak at about 510 nm) (1,55). In 2009, Mallefet reported
the bioluminescence system in the luminous brittle star

Figure 6. Scaleworm Harmotho€e imbricata. Photograph was taken at
the White Sea Biological Station of the Moscow State University, Mur-
mansk region, Russia, by Alexander Semenov.

Photochemistry and Photobiology, 2017, 93 409
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Amphiura filiformis to be a luciferin–luciferase reaction involv-
ing coelenterazine (Fig. 1A, kmax = 475 nm) (56). The molecu-
lar mass of the luciferase is 23 kDa, and therefore, the
luminescence mechanism of A. filiformis is probably different
from that of O. californica (1).

Noticeably, the draft genome of the luminous brittle star
Ophionereis fasciata was reported with low coverage (57), and it
will be useful for identifying photoprotein or luciferase genes of
luminous brittle stars in the future.

HEMICHORDATA
The Phylum Hemichordata consists of three extant classes,
Enteropneusta, Pterobranchia and Planctosphaeroidea, of which
only Enteropneusta contains luminous species (2,4,25).

Acorn worms

There are about 70 species recorded worldwide in Enterop-
neusta (58), of which only a few species of the genera
Balanoglossus and Ptychodera in the family Ptychoderidae are
known to be luminescent (59). Luminosity of the Glossobalanus
species is dubious because one species of the genus Glossobal-
anus sp. was reported as bioluminescent by Harvey in 1922

(30), but not listed in his later books (25,60). The luminous
acorn worms discharged a bluish light following mechanical
(25), electrical (Herring, 1978) or chemical stimuli such as
diluted H2O2 (61).

A luciferin–luciferase reaction was demonstrated in
Balanoglossus biminiensis. The in vitro luminescence of luciferin
and luciferase mixture was triggered by the addition of H2O2

(62). All active luciferin preparations had iodoform-like odor,
and 2,6-dibromophenol (Fig. 1G) isolated from B. biminiensis
was found to be responsible for the said odor (63). Kanakubo
et al. determined 2,3,5,6-tetrabromohydroquinone (Fig. 1H) and
riboflavin as a possible luminous compound and light emitter,
respectively, from Ptychodera flava (Fig. 10) (64). A mixture of
2,3,5,6-tetrabromohydroquinone and riboflavin elicited chemilu-
minescence at kmax = 521 nm, which is close to the in vivo bio-
luminescence at kmax= 528 nm by the addition of diluted H2O2

in 70% 1,4-dioxane at pH 12. They also isolated several bromi-
nated and chlorinated quinone derivatives as other potential lumi-
nous compounds, which showed chemiluminescence (65). They
did not demonstrate the classic luciferin–luciferase reaction of
P. flava (64).

The in vivo bioluminescence mechanisms of acorn worms
remain unknown. It is worth noting that the draft genome
sequence of P. flava was recently reported (66).

Figure 7. New Zealand freshwater limpet Latia neritoides and its luminescence secretion. Photographs by So Yamashita.

Figure 8. (A) Bioluminescent millipede Motyxia sequoiae collected from Tulare County, California. (B) Motyxia bistipita collected from San Luis
Obispo County, California. Photographs kindly provided by Paul Marek.

410 Yuichi Oba et al.
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CHORDATA

Tunicates

The Subphylum Urochordata is the invertebrate taxon most clo-
sely related to vertebrates and consists of three classes: Ascidi-
acea, Thaliacea and Appendicularia. Each class contains small
numbers of luminous species: the sea vase tunicate Clavelina
miniata in Ascidiacea (67); pyrosomatid Pyrosoma spp. and
doliolid Doliolula equus, Pseudusa bostigrinus and Paradoliop-
sis harbisoni in Thaliacea (4,68); and all Oikopleura (subgenus
Vexillaria) spp. and Stegosoma magnum in Appendicularia (69).
The old description of the bioluminescence in ascidiacean Ciona
intestinalis is dubious (67). Bioluminescence in Salpida has not
been confirmed (4). Special care is needed to identify the biolu-
minescence of these transparent filter feeders, because they some-
times trap luminous microorganism, such as luminous
dinoflagellates or a colony of luminous bacteria, which may
induce extrinsic luminescence (70,71).

The brilliant blue-green luminescence of the free-floating colo-
nial tunicate Pyrosoma (Fig. 11) has been well recorded in the
old literature (ref. 25, and references therein), but the biolumines-
cence systems are not much studied. The bioluminescence of
Pyrosoma had been attributed to luminous bacteria, but currently,
this symbiotic hypothesis is almost rejected (1). Its luciferin–lu-
ciferase reaction has not been demonstrated, and no further stud-
ies have been reported (1).

Another colonial tunicate Clavelina miniata is sessile in adult
phase. It emits strong green light when stimulated (67). The
luminescence was recovered by adding water to the lyophilized
material. The addition of ATP or hot water extract of lyophilized
power did not enhance the luminescence intensity of spent solu-
tion (72).

Bioluminescence system of the appendicularians has been
briefly reported only in a book chapter (70). They considered
that the bioluminescence is coelenterazine-related luciferin–lu-
ciferase system based on their unpublished experiments using
house rudiment (nonexpanded and preliminarily secreted “house”
of appendicularians) of Oikopleura labradoriensis: The addition
of coelenterazine to the spent solution enhanced the lumines-
cence, and the methanol extract induced the luminescence of
luciferase from a sea pen (Ptilosarcus sp.).

The draft genome sequence of Oikopleura dioica was recently
reported (73), but the bioluminescence aspect was not addressed
in this works.

Lantern sharks

Most of the luminous taxa within vertebrates are marine bony
fishes, which include about 1500 species in 43 families (74).
Some luminescent teleosts, such as anglerfishes, possess lumi-
nous bacteria in photophores (symbiotic bioluminescence). Some
teleosts, such as the midshipman Porichthys and myctophid
lanternfishes, use cypridinid luciferin and coelenterazine as a
luciferin, respectively, which are probably obtained through the
food chain (5). Other fishes possess intrinsic bioluminescence.
However, chemical studies on fish luminescence have been
mostly hampered by difficulties in obtaining specimens, as most
luminous fishes inhabit deep sea and carry very small pho-
tophores.

In cartilaginous fishes (the class Chondrichthyes), biolumines-
cence is not as common as among bony fishes. Only dozens of
species in three families of luminescent shark, Dalatiidae,
Etmopteridae and Somniosidae, are recorded in the world (74).
These sharks possess many small light-producing organs in a
complex array on their bodies (Fig. 12).

Figure 9. Luminous brittle star Amphipholis squamata and its luminescence. Photographs by Takehito Miyatake.

Figure 10. Ptychodera flava and its luminescence by H2O2 stimulation. Photographs by Yuichi Oba.

Photochemistry and Photobiology, 2017, 93 411
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So far, no bacterial symbiosis has been reported in luminous
sharks, and Renwart et al. showed by microscopic analyses the
absence of bacteria inside the photocytes of the deep-sea lantern
shark Etmopterus spinax (75). These results suggested that the
light production of the photocytes in luminous sharks is intrinsic.

Renwart and Mallefet carried out biochemical studies on the
shark luminescence using E. spinax (76). They examined cross-
reactions between the cold distilled water extract of photophores
with three known luciferins in marine luminous organisms: krill
luciferin, coelenterazine and cypridinid luciferin (76). They also
examined cross-reactions between the methanol extract of pho-
tophores with three known luciferases, which utilize krill luci-
ferin, coelenterazine or cypridinid luciferin. To prevent the
possibility that coelenterazine is stored as inactive forms, such as
protein-bound form, enol sulfate form and dehydrolyzed form
(Fig. 1B), they also performed pretreatments of the methanol
extract to make coelenterazine active free form. However, all
cross-reaction analyses were negative. Although the cross-reac-
tivity between water extract and methanol extract of shark pho-
tophore was not confirmed, the results suggested that the
bioluminescence of shark refers to unknown system, involving a
new luciferin molecule, a new storage form of known luciferin
or photoprotein system (76). No further studies on the biochem-
istry of shark luminescence have been reported so far.

CONCLUSION
In 2006, Osamu Shimomura, a Nobel Prize winner and the
leading authority in the chemical aspects of bioluminescence,
published a monumental book entitled “Bioluminescence:
Chemical principles and Methods” (1). This book compiled
most of the chemical and biochemical researches mainly

published since the 1960s, when the techniques of chemical
and biochemical analyses were rapidly developed. Ten years
after this publication, analytical methods were further refined,
especially in the field of omics sciences such as transcriptome,
whole-genome analysis, metabolomics and bioinformatics.
NMR and mass spectrometry technologies became also more
sophisticated and currently allow the determination of chemical
structures of complicated and less stable compounds. Therefore,
the authors of this review expect that we are now in the time
of the next breakthrough of the studies on bioluminescence
systems.

The selected bioluminescent systems described in this review
are indeed the focus of current research by the authors. The ani-
mals listed in the review are all relatively easy to collect in suf-
ficient amounts for chemical, biochemical and genomic/
transcriptomic analyses. On the other hand, considering recent
worldwide environmental destruction that diminishes valuable
gene resources, we need to solve novel bioluminescence sys-
tems rapidly with focusing on selected targets close to the goal
by international collaboration. Additionally, the taxonomy and
systematics of several luminous organisms were revised
recently. We therefore keep in mind this fact especially when
we revisit the organism studied long years before; that is, old
studies may be mixed up with the results from more than two
species. Finally, we hope that studies on unknown biolumines-
cence systems will provoke new applied techniques on their
base.
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Figure 11. Pyrosoma atlanticum and its luminescence. Photographs by Yuichi Oba.

Figure 12. Ventral view of the head of the luminous shark Etmopterus lucifer and its luminescence. Photographs by Yuichi Oba.
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