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ABSTRACT 24 
 25 

We prove that the Euler-Bernoulli elastic beam theory can be reliably used to describe the 26 
dynamics of an atomic force microscope cantilever during the far from equilibrium snap-to-27 
contact event.  In conventional atomic force microscope operation, force-separation curves are 28 
obtained by post-processing voltage versus time traces produced by measuring one point on the 29 
cantilever close to the hanging end.  In this article, we assess the validity of the Euler-Bernoulli 30 
equation during the snap-to-contact event.    The assessment is based on a direct comparison 31 
between experiment and theory.  The experiment uses Doppler vibrometry to measure 32 
displacement versus time for many points along the long axis of the cantilever.   The theoretical 33 
algorithm is based on a solution of the Euler-Bernoulli equation to obtain the full shape of the 34 
cantilever as a function of time.  The algorithm uses as boundary conditions, experimentally 35 
obtained information only near the hanging end of the cantilever.  The solution is obtained in a 36 
manner that takes into account non-equilibrium motion.  Within experimental error, the theory 37 
agrees with experiment indicating that the Euler-Bernoulli theory is appropriate to predict the 38 
cantilever kinematics during snap-to-contact.    Since forces on the tip can be obtained from the 39 
instantaneous shape of the cantilever, this work should allow for computation of tip-sample 40 
forces during the snap-to-contact event from a conventional force-distance measured input. 41 
 42 
Key Words:  AFM, atomic force microscopy, far from equilibrium AFM cantilever, force 43 
distance curve 44 
 45 
  46 
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INTRODUCTION 47 
 48 

The central hypothesis of this paper is that the Euler-Bernoulli equation provides a valid 49 
model by which the kinematics of an AFM cantilever can be obtained during the far-from-50 
equilibrium snap-to-contact event.  This event is often purposely avoided to stay within the 51 
regime in which harmonic analysis can be performed.  However, the snap-to-contact presents a 52 
unique opportunity to test samples at closest approach.  It allows for optimal sensitivity to 53 
rapidly changing surface forces, allows for optimal lateral resolution because the situation can be 54 
analyzed at arbitrarily small tip-sample separation, and provides a method for obtaining these 55 
results with a simple experimental setup that requires no lock-in amplifiers.  Motivated by these 56 
observations, we sought to determine if a conventional AFM that provides cantilever 57 
displacement measures only at the hanging end, can be used in conjunction with the Euler-58 
Bernoulli equation to obtain the full cantilever kinematics.  Since forces on the tip can be 59 
obtained from the instantaneous shape of the cantilever,[1] this work should allow for 60 
computation of tip-sample forces during the snap-to-contact event from a conventional force-61 
distance measured input. 62 

Atomic force microscopy is capable of generating topographical and surface 63 
spectroscopic information even at length scales below a nanometer.  To obtain this information 64 
reliably and quantitatively, it is necessary for the user to know what forces the cantilever 65 
experiences at each instant of operation.  Thus, the mathematical prediction of the kinematics of 66 
the cantilever sensor plays a central role in defining the output accuracy of the force 67 
reconstruction algorithm in atomic force microscopy.  To date, this description is well tested for 68 
quasi-static operation and for operation where the cantilever is driven in one or more of its 69 
normal modes.  In this article, we study the validity of the assumption that the cantilever’s 70 
kinematics can be obtained from the Euler-Bernoulli equation [2-4] even under the specific 71 
conditions of non-equilibrium motion and non-linear external forces.  These common 72 
circumstances exist during the snap-to-contact event, when the atomic force microscope tip 73 
experiences the last few nanometers of travel before impacting the surface. 74 

While the non-equilibrium motion mentioned above is not present in multifrequency 75 
operation,[5, 6]  the newer commercially available techniques involving off-resonance motion of 76 
the lever as accomplished with peak force mode and fast force mapping do contain non-77 
equilibrium motion[7].  These methods take the lever through a single stroke similar to the slow 78 
force-separation curve dealt with in the present paper. 79 

In the past three decades, atomic force microscopy[8] has produced images of soft and 80 
hard matter surfaces with submicron, even nanometer resolution [9-18].  Nevertheless, 81 
considering its recent centrality in the imaging of materials surfaces and the vast technical 82 
improvements regarding data collection speed and resolution, [5, 19] the technique is not yet 83 
completely quantitative.  This is due to a large extent both to the lack of full information of the 84 
interaction forces between the sample and the tip, and to an unavoidable mismatch between the 85 
mathematically modeled cantilever and the real one. 86 

Since the inception of atomic force microscopy, imaging has been based on monitoring 87 
variations of experimental parameters as the cantilever/tip sensor moves from one pixel to the 88 
next.  In the conventional experimental implementation of the image reconstruction, an optic 89 
lever system is used to measure the position of the tip or, more accurately, the slope of the 90 
cantilever at the tip’s position.  A photodetector output voltage is rapidly recorded at each pixel 91 
while the tip moves up and down as a consequence of topographical and chemical variations on 92 



4 
 

the surface.  Thus, by looking at all pixels within the field of view, a surface image can be 93 
rendered using some function of the photodetector voltage as the contrast quantity. 94 

A fundamental question presents itself naturally; what is the physical content of the 95 
voltage in regards to the surface under study?  Answering this question is tantamount to learning 96 
which tip-sample interaction forces are at play in producing a motion of the cantilever, which 97 
ultimately generates the observed voltage.  To build the voltage-to-force connection, it is 98 
necessary to have a reliable mathematical model that produces the kinematics of the cantilever.  99 
This model is then used to answer several questions.  How does the tip sensor move under 100 
external forces?  How does that induced motion effect a photodetector voltage?  How does one 101 
solve the inverse problem whereby the experimental voltage, conventionally known only from 102 
the motion at one location on the cantilever, is used to reconstruct the motion of the cantilever at 103 
all points and for all times, and in due course, the sought forces acting on it? 104 

Usually, a minimalistic connection is made between forces and voltages where, via 105 
simplifying approximations, the voltage is proportional to the force at every instant.  The 106 
corresponding underlying assumptions, that the cantilever’s deflection at its free end is 107 
proportional to the slope there, and a one-degree-of-freedom-cantilever, are too stringent for 108 
quantitative force analysis when the system is far from equilibrium.[20]  More accurate 109 
approaches include treating the cantilever as a simple harmonic oscillator[21] and even more 110 
realistically, as a true extended beam that can support spatial and temporal vibrations.[20]  The 111 
Euler-Bernoulli beam theory is particularly relevant to a wide range of atomic force microscopy 112 
applications because the slim cantilever’s vibrations are dominated by its flexural motions.  In 113 
effect, the Euler-Bernoulli equation provides a rigorous connection between the complete shape 114 
of the cantilever and the force history required to produce that shape.  Thus, if the shape of the 115 
cantilever is measured experimentally and this agrees with the shape predicted by the Euler-116 
Bernoulli equation, this is synonymous with stating that the forces experienced by the system can 117 
be accurately recovered using the Euler-Bernoulli equation.  This is the central thesis driving the 118 
work we present.  The work is based on an experimental design whereby the cantilever’s 119 
position-vs-time curves are measured at multiple locations, not just at one point near the hanging 120 
end. 121 

Several previous studies have looked at the problem of validating the accuracy of the 122 
Euler-Bernoulli theory in predicting the behavior of real atomic force microscope cantilevers.  123 
Some of this work is reviewed below.  This literature provides results that are both interesting 124 
and useful to the atomic force microscopy community.  However, none of the extant studies 125 
simultaneously and directly compares experiment to theory for the cantilever under non-126 
equilibrium conditions. 127 

Payam and Fathipour[22] performed a theoretical analysis of the Euler-Bernoulli 128 
equation by means of variational analysis with the goal to incorporate practical aspects of the 129 
microscope such as tip mass and cantilever geometry.  Gates and Pratt[23] used Doppler 130 
vibrometry in conjunction with Euler-Bernoulli analysis to measure the cantilever’s spring 131 
constant with high accuracy.  This analysis did not address either transient behavior nor the full 132 
shape of the cantilever.  Payton et al.[24]  tackled the problem of fast imaging whereby an 133 
unknown varying force acts on the tip due to surface topography variations.  While they did 134 
measure the shape of the cantilever as a function of time, the study was restricted to eigenmodes 135 
of the combined cantilever/sample system; amplitudes of the cantilever’s vibration were 136 
collected at different locations at a single frequency for times long relative to the snap-to-contact 137 
event to increase reliability.  This method cannot be used in our case because the snap-to-contact 138 
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determines naturally and suddenly what happens to the deflection of the cantilever.  Zhou, Fu 139 
and Li [25]  used the Euler-Bernoulli theory to extract mechanical properties of composite 140 
materials.  While they did not deal with the full shape of the cantilever, they did compare Euler-141 
Bernoulli with finite element analysis and validated the appropriateness of Euler-Bernoulli to 142 
within three percent under dynamic equilibrium conditions. Laurent, Steinberger and Bellon [26] 143 
considered a cantilever with a spherical bead at its end.  They compared the normal mode shapes 144 
of Euler-Bernoulli theory with experimentally measured ones and got agreement to within ten 145 
percent for the first four modes.  While they were able to measure the shape of the cantilever at 146 
multiple points versus time, they did it for normal modes and not for the general transient case. 147 
Payam[27] studied the shift in frequencies due to the presence of an ambient liquid and used the 148 
Euler-Bernoulli equation to analyze the signal but did not consider the shape of the cantilever or 149 
transient behavior.  Villanueva et al.[28] were interested in the length limits of the Euler-150 
Bernoulli equation.  They found that 20 𝜇𝜇𝜇𝜇 long levers, corresponding in their case to a 151 
cantilever length:width aspect ratio of about five, are short enough to make the theory deviate 152 
from experiments.  Zhou, Wen and Li [29] presented a theoretical study of short cantilevers and 153 
showed how to correct the Euler-Bernoulli equation via the Timoshenko theory.  Their paper did 154 
not present experimental comparison nor did it consider the shape of the cantilever or transient 155 
behavior. Wagner and Killgore[30] studied the resonant motion of a cantilever under the effect 156 
of lumped or distributed forces.  No transient or experimental measurements were considered.   157 

In general, the difficulty in providing a definite account of the agreement between 158 
experiment and theory resides in both.  On the one hand, typical atomic force microscopes are 159 
not set up to measure rapid cantilever deflections at multiple points along the lever.  Thus, the 160 
full shape of the lever necessary to determine unambiguously the forces acting on it is not 161 
available.  On the other hand, the theories rely on reasonable assumptions fit to the problem of 162 
interest.  Thus, for example, one may be interested in cantilever free boundary conditions at the 163 
hanging end for spring constant calibration, or harmonic excitations at the base for multi 164 
frequency studies.  All articles in this field use the Euler-Bernoulli equation with adaptations 165 
pertinent to the problem at hand. 166 

In this context, the present paper presents new data and analysis useful in the unsolved 167 
problem of understanding the connection between theory and experiment during the snap-to-168 
contact event.  We previously showed that the classic concave up surface potential vs separation 169 
could be extracted from this motion in air [3] and in liquid [31].  These earlier papers utilized 170 
Tikhonov regularization to solve the inverse problem imposed by only having experimental 171 
measurement of the end of the lever while solution of the problem requires knowledge of the full 172 
lever shape.  This is an ill-posed inversion for cases involving fast transients, like in the snap-to-173 
contact.  We inverted the Euler-Bernoulli equation in the cantilever’s shape space spanned by the 174 
normal modes under conditions of an unloaded tip.  This was an intrinsically limited method 175 
since, during the snap-to-contact, the tip load quickly increases thus violating the assumption of 176 
an unloaded tip used to create the basis set.  More recently, we developed what should be a more 177 
robust method for converting the voltage-vs-time trace produced by the vertical motion of the tip 178 
measured at a single cantilever location into forces, the Causal Time Domain Analysis 179 
(CTDA).[32]  CTDA relies on explicit consideration of the measured nonlinear voltage-time data 180 
as a boundary condition to the Euler-Bernoulli equation.  When we compared Tikhonov 181 
regularization to CTDA, we found that the two approaches did not produce the same force-182 
separation curves.[2]  An obvious next step would be to use some known surface force to 183 
determine which theory performed better.  However, there is currently no well-accepted standard 184 



6

Figure 1.  An incoming light ray shown as a vertical line impinges 
at the hanging end of the cantilever.  Here the cantilever is 
portrayed in two different shapes both having the same z-location 
and slope at the end of the lever.   This will produce the same 
voltage at the distant photodetector even though different forces are 
needed to produce the two shapes.

for creating a surface force that is known within a few nanometers of tip/surface contact. Thus, 185
we decided to test CTDA against experimentally measured cantilever shapes.  The choice is 186
based on the fact that CTDA, unlike regularization, is free of tuning parameters.  That is what we 187
present in the current article, which is organized as follows.  In the Methods section, we explain 188
how conventional AFM measurements are performed and give details of our experimental setup.  189
Also, in the Methods section, a brief description of our theory is presented.  Then, in the 190
Experimental Results section, we present the position versus time traces at multiple points along 191
the cantilever.  In the Comparison of Theory and Experiment section, we show how the theory 192
output, i.e. the full shape of the cantilever at all times, matches with the experiment.  In the last 193
section, we present the Conclusions.194

195
METHODS196

197
Conventional Experimental Approach198

199
Standard atomic force microscopes come equipped with a light detection system to 200

measure the motion of the cantilever as shown in Figure 1.  A light ray reflected off the 201
cantilever provides a photodetector voltage that is proportional to the slope of the cantilever at 202
the hanging end.203

However, and as 204
Figure 1 depicts, the 205
instantaneous value of 206
the slope at one point 207
provides only partial 208
information of the full 209
shape of the cantilever at 210
that instant. Since the 211
full shape is necessary to 212
determine the interaction 213
force between tip and 214
sample but is not 215
typically available216
experimentally, 217
mathematical modeling 218
is called upon to bridge 219
the gap between what is 220
needed and what 221
experiment provides.222

One quantitative 223
approach to make the 224
connection relies on the 225
Euler-Bernoulli equation 226
to predict the motion of the cantilever.[33] In one implementation using this approach[32], the 227
instantaneous slope, proportional to the photodetector voltage, is used as a boundary condition to 228
the Euler-Bernoulli equation.  By assuming a straight cantilever as an initial condition to the 229
problem, corresponding to a large tip-sample separation at the beginning of the experiment when 230
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Figure 2:  Diagram of the setup used to experimentally measure 
cantilever deflections during the snap-to-contact.  The cantilever is 
shown with indices along the long axis of the cantilever each 
separated by 1 um. 

 

no interaction forces are detectable, the equation can be solved iteratively in time to obtain the 231 
full shape of the cantilever at all future times.  With this information, the interaction force at all 232 
times is finally obtained.  Afterwards, by incorporating instantaneous separation data, the sought 233 
force-separation curve is obtained parametrically in time. 234 

 235 
Experimental Setup and Considerations 236 
 237 

The experiment is in the form of displacement versus time measurements for many points 238 
along the long axis of the cantilever.  By contrast, conventional data collection in atomic force 239 
microscopy is at a single point, typically near the hanging end of the cantilever.  Laser Doppler 240 
vibrometry was used to monitor the motion of multiple points along the length of the cantilever 241 
at multiple times during the snap-to-contact.  A schematic of the equipment used is shown in 242 
Figure 2.  The method 243 
used was similar to 244 
that described in 245 
Payton et al.[34]  246 
Briefly, a vibrometer  247 
(Polytec VIB-A-510) 248 
was attached to a 249 
cantilever mount at 250 
12.5°.  This allowed 251 
for the velocity of the 252 
cantilever in the 253 
direction perpendicular 254 
to the lever’s surface 255 
to be recorded with 256 
high bandwidth (up to 257 
20 MHz).  The 258 
substrate (a piece of 259 
freshly cleaved mica) 260 
was cycled 261 
sinusoidally toward 262 
and away from the 263 
cantilever tip (Bruker 264 
MSNL lever B, 200 265 
µm long rectangular 266 
𝑆𝑆𝑆𝑆3𝑁𝑁4 cantilever with a 267 
spring constant of 0.02  268 
N/m, a thermal tune 269 
measured first mode resonance of 14.65 kHz, and a pyramidal tip) using a piezo stage (Npoint 270 
model NPXY60Z20) with closed loop capacitance control at 50 Hz with an amplitude of 271 
850±0.1 nm (maximum velocity was therefore 267 µm/s). The data displayed was collected at 272 
the point in the motion of the stage with the sample moving towards the cantilever tip at a 273 
velocity of 150±7 µm/s.  Z-motion monitoring was done along the cantilever every 1 𝜇𝜇𝜇𝜇 while 274 
the cantilever underwent multiple snaps-to-contact.  To do signal averaging over several snaps at 275 
the same point and to create an experimentally determined cantilever shape, it was necessary to 276 
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shift the individual snaps so they were in-phase with each other.  This was done by cross-277 
correlating the data streams over a short time period that spanned the snap-to-contact. 278 
 The approach velocity was taken into account when converting the difference in piezo 279 
position and cantilever deflection into tip-sample separation.  Under the conditions used in our 280 
manuscript, the approach velocity was very slow compared to the cantilever velocity due to the 281 
snap-to-contact.  So, there was unlikely to have been any significant modification in the situation 282 
seen by the tip due to the moving sample.  The average speed of the cantilever during the snap 283 
was about 1600 µm/s.  Thus, during the 25 µs of the snap as the tip traversed the 40 nm until 284 
contact, the stage moved by 3.8 nm.  This was taken into account when producing the force-285 
separation plots shown in the manuscript.  While there was a slight drift present in the system 286 
causing the tip to snap to contact with the sample at a slightly different point in the periodic 287 
motion of the sample, this produced a sub-nanometer uncertainty in the tip-sample distance 288 
which was within the thermal noise in the system so we chose to ignore it.        289 

At much higher velocities and especially in fluid, confined fluid layer effects between the 290 
cantilever and the sample surface will contribute substantially to the motion of the cantilever and 291 
will need to be taken into account when determining the tip-sample force.  However, none of this 292 
is relevant to the problem of converting cantilever shape into cantilever force.  In other words, 293 
these issues are important in determining tip-sample forces, but not important in determining 294 
cantilever shape. 295 

Regarding non-linearity of piezo scanners, the approach was made using an Npoint stage 296 
with capacitance sensor (±0.1 nm).  Any hysteresis in the motion of the piezos was taken into 297 
account by using the calibrated sensor values instead of the drive signal sent to the stage.   298 

 299 
Influence of Ambient Humidity on the measurements 300 
 301 
The humidity was held constant at 43±5% RH and a 20°C temperature throughout the 302 
experiment. It is likely that the onset of the snap-to-contact was initiated due to thermally driven 303 
oscillations in the fluid layers on the tip and/or mica surface.  The retraction of the cantilever was 304 
not the focus of the experiment therefore the formation and snapping of any meniscus was not 305 
explored.  It would be expected that as the humidity increased, the size and strength of any 306 
meniscus force would increase, though this is not taken into account in the model used.  Overall, 307 
these issues are of central importance in the study of the origins of tip/sample forces probed 308 
using F(s) curves but not in characterizing the kinematics of the cantilever motion.  For our 309 
purposes, as long as some force, be it capillary, vDW, or electrostatic, was present that initiated a 310 
snap-to-contact, then the lever is made to move in a non-equilibrium manner as the tip snaps 311 
down to the surface. 312 
 313 
EXPERIMENTAL RESULTS 314 
 315 
Position vs. time traces were collected as explained in the previous section.  Figure 2 labels the 316 
210 positions at which time trace data were taken.  We were particularly careful to gather 317 
information from bending deflections only. It is known that cantilevers tend to exhibit torsion 318 
upon snap-to-contact.  The exact lateral location of the tip on the Bruker MSNL B cantilever 319 
used is not always centered on the cantilever. Therefore, the cantilever can experience a moment 320 
about the tip when the tip experiences a force such as a snap-to-contact event. The cantilever 321 
displacement was measured at points taken along a line that intersected the tip. In doing so, the 322 
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Figure 3.  Snap-to-contact displacement of a point ~15 µm from 
the free end of the cantilever as a function of time.  Also shown is 
a best fit EVE curve[29] that helps the eye follow the general trend 
and is useful in matching the phases of multiple data sets like the 
one shown. 

effect of the torsional modes are minimized in the data. Data previously collected by Payton et 323
al.1,2 using a similar method have been shown to be modelled well by a bending mode only FEA 324
model3 indicating that, with the correct placement of the points at which data is collected, the 325
torsional modes can be ignored.326

An example of a time trace for a single snap at a single location on the lever is shown in 327
Figure 3. To ensure that the  input to our model matched the initial conditions of the theory we 328
used, it was necessary to have no displacement at early times corresponding to a motionless 329
cantilever when the tip and sample are well separated and not interacting. To achieve this, we 330
found the average displacement value prior to the snap, and then used the collected data to find 331
the last time the recorded data achieved this value prior to entering the snap-in region.  We then 332
appended ten identical values of this average to the start of each snap thus guaranteeing a well-333
behaved input.334

At some point,335
the tip-sample 336
interaction becomes 337
non-negligible and a 338
downward trend 339
corresponding to an 340
attraction occurs.  This341
is seen in Figure 3342
starting at around 343
5 𝜇𝜇𝜇𝜇. Eventually, the 344
tip feels the repulsive 345
force due to a346
combination of a 347
confined fluid layer 348
and Pauli exclusion 349
acting on electrons in350
the tip and the surface.  351
This slows the 352
cantilever and 353
eventually causes it to 354
reverse direction.355

Apparent in the typical snap-to-contact event shown in Fig. 3, are a few plateaus in the 356
traverse of the cantilever toward the surface. In some cases, the path of the lever even seems to 357
reverse direction for a short time before continuing on down.  It is possible that high frequency 358
oscillations of the cantilever due to the thermal bath or some other source existed as the state of 359
the lever prior to its entering the snap-to-contact regime.  It is also possible that the short time 360
events came from some electronic source related to the Doppler system used to measure the 361
cantilever displacements.  Conventional cantilever analysis would treat these as higher order 362
normal modes.  However, the amplitude, frequency, and phase of such modes all depend 363
intimately on the boundary conditions at the hanging end of the cantilever.  During snap-to-364
contact, this boundary is changing so rapidly that the lever is unable to move through a complete 365
period of an oscillation before the boundary condition has substantially changed because the tip 366
is now closer to the surface.  Thus, the concept of a mode is not well defined during the snap-to-367
contact event. In an attempt to determine what range of frequencies the cantilever used would go 368
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Figure 4.  Displacement vs. time curves for three locations along the lever:  at the tip, 82 um 
back from the tip, and 123 um back from the tip.

Figure 5.  Instantaneous positions of monitored points along 
the cantilever are shown 15 µsec after the start of the snap-to-
contact.  The trend line represents the cantilever.

through as it traversed the snap-to-contact, we solved the equations 4 and 5 in reference [33].  In 369
going from large separation to contact:  the first free mode of the lever goes from 15 kHz to 0 370
kHz, the second free mode goes from 95 kHz to 75 kHz, and the third free mode goes from 266371
kHz to 253 Hz.  None of these ranges includes the observed oscillation frequency near 200 kHz 372
seen in our data.  This makes it unlikely that these oscillations are a reflection of higher order 373

resonances in the lever. As an initial attempt at analyzing this complex data, we decided to focus 374
on the main feature of the monotonic descent of the lever toward the surface.  To extract this 375
feature from the data, we found best-fit EVE curves[32, 35] and used these functions as inputs to 376
our theoretical analysis. 377

Figure 4 shows three 378
displacement vs time curves 379
corresponding to three 380
different locations along the 381
cantilever.  As one looks 382
further away from the tip, 383
the onset of the snap-in gets 384
later in time and the 385
amplitude of the 386
displacement decreases.  387
The general trend is clearly 388
downward, however there 389
are a few steps in the 390
recorded path along the way391
as described in Figure 3 392
above. The EVE fits are 393
shown as the solid lines in 394
each of the plots.  In general, 395
the EVE function fit the data 396
very well.  397

A useful alternative view of the cantilever motion is given in Figure 5. There, a snapshot 398
of the full cantilever shape is created by plotting the position of each individual point along the 399
lever at one instant in time.400

401
402
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COMPARISON BETWEEN THEORY AND EXPERIMENT403
404

Since the Euler-Bernoulli differential equation is 4th order in space and 2nd order in time, 405
six constraints are needed to solve it.  The constraints are obtained by setting two initial 406
conditions and four boundary conditions. Our solution uses two initial conditions in the form of 407
the shape of the cantilever at two consecutive early times. It is assumed that the force on the 408
cantilever is small enough at these early times to allow for quasi-static motion.  Thus, the two 409
initial shapes are taken from unequivocally known static shapes under an external force at the 410
free end. This effectively provides the initial shape of the cantilever and its initial state of 411
velocities.  In addition, we use two boundary conditions at the attached point namely, that the 412
cantilever is fixed there and that it does not bend.  The last two conditions are obtained by setting 413
the vertical displacement and the slope at the hanging end of the cantilever equal to their 414
experimentally measured values.  With that input, we numerically solve the Euler-Bernoulli 415
equation and predict the motion of all the cantilever points from the free to the fixed end.  This 416
theoretical cantilever shape vs time, relying only on measurements made near the free end of the 417
cantilever, is then compared to the full experimentally measured motion along the whole 418
cantilever.419

To implement the solution, we took a few of the position-vs-time curves near the end of 420
the lever and used them to determine the slope at the end of the lever.  This allowed us to mimic 421
the information available in most commercial atomic force microscopes using the direct 422
displacement measurements provided by our Doppler technique.  We emphasize that only data 423
near the end of the lever was used to compute the entire shape of the lever.  These computed 424
shapes were then compared against the Doppler vibrometry experiments. We did this 425
comparison in two ways.  First, we looked at the displacement vs time curves for individual 426

Figure 6.  Comparison of experiment with theory at individual points along the long axis of 
the cantilever:  tip(left columns), 82 um back from tip (middle columns), 123 um back from 
tip (right columns).  The top row shows experimental displacement vs. time curves (blue dots) 
along with the best fit EVE function (solid yellow line) to each curve.  The bottom row shows 
the same experimental data but the solid red lines are the theoretical outputs from numerical 
solution to the Euler Bernoulli equation as described in the text.
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Figure 7.  Snapshot of the shape of the full cantilever at an instant in time.  Blue dots are the 
experimentally measured points.  The black dotted line is the best fit to the theory.  The red 
shaded region corresponds to the range of theoretical curves obtained using +/- one standard 
deviation in the experimental input error to the measured slope at the end of the cantilever.

locations along the lever.  Second, we looked at the entire shape of the lever at a given time 427
point.428

To compare theory with experiment at single points along the lever, Figure 6 shows time 429
traces at the same three points as in Figure 4 together with the theoretical outputs.  The top row 430
of curves shows these experimentally determined plots with the EVE function best fits.  The 431
lower set of curves shows the same experimental data but the solid lines represent the output 432
from the model which used the Euler-Bernoulli solutions using data only near the end of the 433
lever to compute the solid curves.  Experiment and theory agree well at the tip (left most plots in 434
Fig. 7) which is expected since this is what was used as the input to the model.  Experiment and 435
theory also fit well 123 µm back from the end of the lever.  However, the fit 82 µm back from 436
the end is not as good. Looking carefully at noise in the system will allow us to determine if the 437
overall motion of the cantilever is well captured by our model or not.438

Substantial measurement noise propagated from the input of our model to its output.  To 439
understand how this affected the deviation between experiment and theory, it was necessary to 440
perform an error analysis that contained as much of the noise and its propagation through the 441
model as possible. To this end, we used five data points near the end of the cantilever to 442
determine its slope.  In the absence of noise, any pair of these five points would have yielded the 443
same slope.  Because of the presence of noise, we obtained a population of slopes from all pair 444
combinations and used this to compute a standard deviation of the noise.  This population was 445
used in the analysis that follows to find an envelope of model shapes of the cantilever.446
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As a second way to compare experiment with theory, a typical snapshot of the lever with447
errors displayed is shown in Figure 7. The blue points with small error bars represent the 448
experimentally determined locations of the lever at that particular location along the long axis of 449
the lever.  The dashed black line corresponds to the average theoretical value for the z -position 450
of each location along the long axis of the lever.  The shaded region represents the error in the 451
model output based on the measured error in the input data.  Specifically, five locations near the 452
end of the lever were used.  These locations were close enough together so that they should have 453
all produced the same slope.  In fact, they provided a range of slopes.  The standard deviation of 454
the slope was found and then the mean plus or minus one standard deviation was used as an input 455
to the model.  This produced a range of shapes that falls within the shaded region.  Note:  this 456
slope is used as an input at each time point in the model.  Thus, a different standard deviation 457
and a different shaded region were computed at each time point. 458

Figure 8 shows six different snapshots of the snap-to-contact portion of the curve 459
displayed in the same way as Figure 7. A movie showing the whole trajectory of the whole 460
cantilever during the snap-to-contact corroborates what is displayed in Figure 8 (see 461
supplemental data).  While there are some experimental points that fall outside the shaded 462
region, it is clear that the majority of experimental points fall within the computed error. For the 463
six typical snapshots shown in Figure 9, an average of 71% of the experimental points fall within 464
one standard deviation of the mean.  Assuming a Gaussian distribution of the experimental 465
points about some “true mean,” the obtained distribution of experimental points about the 466
theoretical curves is as expected.467

468
This gives substantial evidence that the Euler-Bernoulli equation in general, and our 469

model for solving the ill-posed problem present when trying to convert the data provided by 470

Figure 8.  Superimposed experimental measurements and theoretical predictions based on 
the Euler-Bernoulli equation.  Experimental results are shown as dots.  Theory is displayed 
as a dashed line representing the best fit cantilever shape with a shaded region around it 
representing theoretical outcomes that fall within one standard deviation of the experimental 
means assuming normally distributed errors.  Percentages reflect how many of the 
experimental points fall within the shaded regions around the theoretical curves.
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most commercial atomic force microscopes into known cantilever shapes, provide correct 471 
solutions. 472 
 473 
CONCLUSIONS 474 
 475 
We find that the Euler-Bernoulli theory is an appropriate framework to predict the kinematics of 476 
the cantilever during the far-from-equilibrium snap-to-contact event.  We show by direct 477 
comparison with Doppler vibrometry experiments the validity of the force-separation 478 
reconstruction algorithm based on the Euler-Bernoulli equation.  Specifically, we did this 479 
comparison for the case of a cantilever undergoing far-from-equilibrium motion driven by non-480 
linear forces during the snap-to-contact event.  The relevance of our result is that, unlike in the 481 
experiment used here, conventional atomic force microscopy experimental conditions allow 482 
collection of the slope or position vs time at only a single point on the cantilever.  While our 483 
rendering of the Euler-Bernoulli-based algorithm allows for the reconstruction of the full shape 484 
of the cantilever at all times, the reliability of these shapes rests ultimately on the validity of the 485 
model used.  Our proof thus paves the way to use our reconstruction algorithm under 486 
conventional atomic force microscopy operating conditions.  The time-consuming multiple 487 
Doppler vibrometry measurement, while central to our test, is shown here to be no longer needed 488 
when running conventional atomic force microscopy experiments  Indeed, once one knows that 489 
Euler Bernoulli can be used during snap-to-contact to predict the shape of the cantilever, the 490 
bending forces are readily attainable.     In other words, our results should extend the ability to 491 
produce accurate force-separation curves from conventional voltage-time traces into far-from-492 
equilibrium motion and non-linear interactions. 493 
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