Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12202/1334
Title: Molecular Modeling of Cardiac Troponin
Authors: Manning, Edward P.
Keywords: Biophysics.
Molecular physics.
Molecular biology.
Issue Date: 2012
Publisher: ProQuest Dissertations & Theses
Citation: Source: Dissertation Abstracts International, Volume: 74-02(E), Section: B.;Advisors: Steven D. Schwartz; Denis L. Rousseau.
Abstract: The cardiac thin filament regulates interactions of actin and myosin, the force-generating elements of muscular contraction. Over the past several decades many details have been discovered regarding the structure and function of the cardiac thin filament and its components, including cardiac troponin (cTn). My hypothesis is that signal propagation occurs between distant ends of the cardiac troponin complex through calcium-dependent alterations in the dynamics of cTn and tropomyosin (Tm). I propose a model of the thin filament that encompasses known structures of cTn, Tm and actin to gain insight into cardiac troponin's allosteric regulation of thin filament dynamics. By performing molecular dynamics simulations of cTn in conjunction with overlapping Tm in two conditions, with and without calcium bound to site II of cardiac troponin C (cTnC), I found a combination of calcium-dependent changes in secondary structure and dynamics throughout the cTn-Tm complex. I then applied this model to investigate familial hypertrophic cardiomyopathy (FHC), a disease of the sarcomere that is one of the most commonly occurring genetic causes of heart disease. Approximately 15% of known FHC-related mutations are found in cardiac troponin T (cTnT), most of which are in or flank the alpha-helical N-tail domain TNT1. TNT1 directly interacts with overlapping Tm coiled coils. Using this model I identified effects of TNT1 mutations that propagate to the cTn core where site II of cTnC, the regulatory site of calcium binding in the thin filament, is located. Specifically, I found that mutations in TNT1 alter the flexibility of TNT1 and that the flexibility of TNT1 is inversely proportional to the cooperativity of calcium activation of the thin filament. Further, I identified a pathway of propagation of structural and dynamic changes linking TNT1 to site II of cTnC. Mutation-induced changes at site II cTnC alter calcium coordination which corresponds to biophysical measurements of calcium sensitivity. I compared this pathway of mutational propagation with the pathway of the calcium activation of the thin filament and found that they are identical in terms of location but opposite in direction.
URI: https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3529205
https://hdl.handle.net/20.500.12202/1334
Appears in Collections:Albert Einstein College of Medicine: Doctoral Dissertations

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.