Show simple item record

dc.contributor.authorSchilter, David
dc.contributor.authorCamara, James M.
dc.contributor.authorHuynh, Mioy T
dc.contributor.authorHammes-Schiffer, Sharon
dc.contributor.authorRauchfuss, Thomas B.
dc.identifier.citationSchilter, David, Camara, James M., Huynh, Mioy T., Hammes Schiffer, Sharon and Rauchfuss, Thomas B. (2016). Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chemical Review 116: 8693-8749.en_US
dc.description.abstractHydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.en_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofseriesChemical Reviews;116
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.subjectHydrogenase Enzymesen_US
dc.subjectsynthetic modelsen_US
dc.subjectmetal hydridesen_US
dc.titleHydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides.en_US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States