Show simple item record

dc.contributor.authorSantos, Lea F.
dc.contributor.authorChávez-Carlos, Jorge
dc.contributor.authorLópez-del-Carpio, B.
dc.contributor.authorBastarrachea-Magnani, Miguel A.
dc.contributor.authorStránský, Pavel
dc.contributor.authorLerma-Hernández, Sergio
dc.contributor.authorHirsch, Jorge G.
dc.date.accessioned2020-11-19T20:31:21Z
dc.date.available2020-11-19T20:31:21Z
dc.date.issued2019-01-15
dc.identifier.citationSantos, Lea F., Jorge Chávez-Carlos, B López-del-Carpio, Miguel A Bastarrachea-Magnani, Pavel Stránský, Sergio Lerma-Hernández, Jorge G Hirsch. (2019). Physical Review Letters 122(2): 021401.en_US
dc.identifier.issnPrint: 0031-9007 Electronic: 1079-7114
dc.identifier.urihttps://doi.org/10.1103/PhysRevLett.122.024101en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12202/6450
dc.descriptionResearch article, peer-review. Open Access.en_US
dc.description.abstractThe exponential growth of the out-of-time-ordered correlator (OTOC) has been proposed as a quantum signature of classical chaos. The growth rate is expected to coincide with the classical Lyapunov exponent. This quantum-classical correspondence has been corroborated for the kicked rotor and the stadium billiard, which are one-body chaotic systems. The conjecture has not yet been validated for realistic systems with interactions. We make progress in this direction by studying the OTOC in the Dicke model, where two-level atoms cooperatively interact with a quantized radiation field. For parameters where the model is chaotic in the classical limit, the OTOC increases exponentially in time with a rate that closely follows the classical Lyapunov exponent.en_US
dc.description.sponsorshipWe thank L. Benet and T. Seligman for their useful comments. M. A. B. M., S. L. H., and J. G. H. acknowledge J. Dukelsky for fruitful discussions in the context of the Spanish Grant No. I-COOP2017:COOPB20289. P. S. is grateful to P. Cejnar for stimulating discussions. We acknowledge financial support from Mexican CONACyT Grant No. CB2015-01/255702, DGAPA-UNAM Grant No. IN109417 and RedTC. M. A. B. M. is a postdoctoral fellow of CONACyT. P. S. is supported by the Charles University Research Center Grant No. UNCE/SCI/013. L. F. S. is supported by the NSF Grant No. DMR-1603418.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofseriesPhysical Review Letters;122(2)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectQuantum quenchen_US
dc.subjectQuantum chaotic transporten_US
dc.subjectquantum chaosen_US
dc.subjectQuantum statistical mechanicsen_US
dc.subjectQuantum-to-classical transitionen_US
dc.subjectQuantum chaotic systemsen_US
dc.subjectquantum billiardsen_US
dc.subjectGeneral Physicsen_US
dc.subjectQuantum Informationen_US
dc.subjectCondensed Matter & Materials Physicsen_US
dc.titleQuantum and classical lyapunov exponents in atom-field interaction systemsen_US
dc.typeArticleen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States