• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Katz School of Science and Health
    • Mathematical Sciences Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Katz School of Science and Health
    • Mathematical Sciences Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    WISHART EXPECTATION OPERATORS AND INVARIANT DIFFERENTIAL OPERATORS

    Thumbnail

    Date
    1980
    Author
    KUSHNER, HOWARD BURT
    Metadata
    Show full item record
    Share
    Abstract
    Let E(,n) denote the expectation operator of the Wishart distribution W(k,n,(SUMM)) and let E(,n)('t) denote the "conditional" expectation operator defined by.;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;where (VBAR)V(VBAR) denotes the determinant of the k x k positive definite symmetric matrix V, trA is the trace of A, (SUMM) is a k x k positive definite symmetric matrix, C(,n) is a constant depending on n, and dV denotes Lebesgue measure on the space of k x k positive definite matrices, V > 0. We study the common eigenfunctions of the operators E(,n) (n (GREATERTHEQ) n(,0)) and the common eigenfunctions of the operators E(,n)('t) (n (GREATERTHEQ) n(,0)) which are shown to be identical with the common eigenfunctions of certain invariant partial differential operators. The eigenvalues of the expectation operators are determined in terms of the eigenvalues of the differential operators, and vice-versa. Explicit expressions for (lamda)(,n), the eigenvalues of E(,n), somewhat more complete than those obtained previously by Maass, are given. (lamda)(,n)('t), the eigenvalues of E(,n)('t), are characterized via a unique solution to a certain ordinary differential equation. An asymptotic formula for (lamda)(,n)('t), as t (--->) (INFIN), is proved, as well as for functions defined by integrals of the form.;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;where f(V) is homogeneous function. Irreducible class 1 subspaces, with respect to the congruence transformations of G (k) are constructed from the common eigenfunctions of E(,n). An integral formula for the most general common eigenfunction of E(,n) is proved.
    Permanent Link(s)
    https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:8103720
    https://hdl.handle.net/20.500.12202/2675
    Citation
    Source: Dissertation Abstracts International, Volume: 41-08, Section: B, page: 3061.
    *This is constructed from limited available data and may be imprecise.
    Collections
    • Mathematical Sciences Dissertations [148]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University