• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Katz School of Science and Health
    • Mathematical Sciences Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Katz School of Science and Health
    • Mathematical Sciences Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DIFFERENCE EQUATION METHODS FOR SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

    Thumbnail

    Date
    1982
    Author
    KOHN, MERYLE CHERRICK
    Metadata
    Show full item record
    Share
    Abstract
    Difference equation techniques are applied to determine sufficient conditions on polynomials P(x,y) for which the Fischer space related differential equation.;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;has (a) no non-trivial solutions f(x,y); (b) locally convergent solutions; and (c) formal solutions; {lcub}where P(x,y) is a polynomial with complex coefficients,;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;is the differential operator whose coefficients are the complex conjugates of the coefficients of P, and.;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;Solutions of a general difference equation in two dimensions, (SIGMA) K(,i)C(,m+ai, n+bi) = 0 with K(,i) non-vanishing, are analyzed. Particular emphasis is placed on solutions with C(,mn) = 0 in specified regions of the plane.;Difference equations corresponding to the differential equation.;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;(where P and Q are polynomials) are examined to determine sufficient conditions on P and Q for which the equation has (a) no non-trivial solution; (b) polynomial solutions; and (c) formal solutions.
    Permanent Link(s)
    https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:8220406
    https://hdl.handle.net/20.500.12202/2804
    Citation
    Source: Dissertation Abstracts International, Volume: 43-04, Section: B, page: 1132.
    *This is constructed from limited available data and may be imprecise.
    Collections
    • Mathematical Sciences Dissertations [148]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University