• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CENTRAL CHOLINERGIC TRANSMISSION AT MAUTHNER FIBER SYNAPSES

    Thumbnail

    Date
    1982
    Author
    DAY, JOHN WEST
    Metadata
    Show full item record
    Share
    Abstract
    The hatchetfish Mauthner fiber is presynaptic to 8-14 large axons in the medulla; the large ("giant") central synapses formed by these fibers have been thoroughly studied. Experiments were undertaken to: (1) show that transmission is cholinergic at teleost Mauthner fiber synapses, and (2) to compare transmission at the hatchetfish giant synapse with that at peripheral cholinergic synapses.;Autoradiography using radiolabeled (alpha)-bungarotoxin and histochemistry using acetylcholinesterase strains were the two anatomical techniques employed to demonstrate cholinergic transmission. The autoradiography showed dramatic labeling of all identified hatchetfish giant synapses. There was no labeling of synapses if the (alpha)-bungarotoxin was introduced together with d-tubocurarine. The acetylcholinesterase histochemistry showed large deposits of stain at all identified Mauthner fiber synapses in hatchetfish, goldfish, and killifish. Stain deposition was not diminished by butyrylcholinesterase blockers, but was eliminated by poisoning acetylcholinesterase.;Miniature postsynaptic potentials (MPSPs) from individual giant synapses were averaged: the rise time was 70 (mu)s, and the fall was biphasic with decay constants for the two phases of 280, and 800 (mu)s, (in 25% of the records a third, very slow tail was seen which had a decay constant of 4.2 ms). This shape was identical to that of the postsynaptic currents at this synapse, and indicates that the mechanisms responsible for the biphasic decay operate on individual quanta.;The anatomical results are good evidence that the teleost Mauthner fiber is nicotinic cholinergic. The biphasic decay of MPSPs indicates that transmitter-receptor kinetics at this synapse differ from the kinetics at peripheral nicotinic cholinergic synapses where single exponential decays are seen. These data add to the understanding of the Mauthner fiber, and hold promise for elucidating mechanisms of central nicotinic cholinergic transmission.
    Permanent Link(s)
    https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:8223512
    https://hdl.handle.net/20.500.12202/2808
    Citation
    Source: Dissertation Abstracts International, Volume: 43-05, Section: B, page: 1382.
    *This is constructed from limited available data and may be imprecise.
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University