Show simple item record

dc.contributor.authorBRENNER, TERENCE
dc.date.accessioned2018-07-12T18:18:33Z
dc.date.available2018-07-12T18:18:33Z
dc.date.issued1984
dc.identifier.citationSource: Dissertation Abstracts International, Volume: 45-12, Section: B, page: 3837.
dc.identifier.urihttps://yulib002.mc.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:8502693
dc.identifier.urihttps://hdl.handle.net/20.500.12202/2976
dc.description.abstractWe look at the Schrodinger operator H=-(DELTA)+q(x) where (DELTA) is the Laplacian and q(x)(epsilon)R('n). We give sufficient conditions for the spectrum of H to contain the interval of the form {lcub}a,(INFIN)) and sufficient conditions for the essential spectrum of H to contain the interval of the form {lcub}b,(INFIN)). Our estimates for the lower bounds of a and b are positive numbers. We allow q(x) to be negative in some region. Our results are in R('2) and in R('n).
dc.publisherProQuest Dissertations & Theses
dc.subjectMathematics.
dc.titleTHE SPECTRA OF THE SCHROEDINGER OPERATOR
dc.typeDissertation


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record