• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Genetic and molecular studies of thenod locus: A putative microtubule motor required in Drosophila female meiosis

    Thumbnail
    Date
    1990
    Author
    Zhang, Ping
    Metadata
    Show full item record
    Abstract
    The female-specific {dollar}nod\sp{lcub}a{rcub}{dollar} mutation induces meiotic nondisjunction of nonexchange chromosomes in the distributive system, and the mitotic loss of maternally derived chromosomes in early cleavage divisions. Eight new nod alleles were isolated. They are all recessive and phenotypically similar to {dollar}nod\sp{lcub}a{rcub}{dollar}; thus the pleiotropic effects of {dollar}nod\sp{lcub}a{rcub}{dollar} on meiosis and early mitosis are a general property of mutations at this locus. These new alleles were induced on a multiply-inverted {dollar}X{dollar} chromosome (FM7), which strongly suppresses {dollar}X{dollar}-chromosomal exchange in FM7,nod/{dollar}nod\sp{lcub}a{rcub}{dollar} females. Consequently, {dollar}X{dollar} chromosome nondisjunction and mitotic loss are greatly intensified.;The genomic DNA sequence corresponding to the {dollar}nod{dollar} locus has been cloned by chromosome walk, and the gene was identified by restriction fragment length polymorphisms. The nod transcript was identified on the basis of its female specificity and its absence or altered size in animals bearing either of two nod alleles. nod cDNA clones containing the entire open reading frame have also been isolated and sequenced. The amino terminal (350 a.a.) of the predicted nod protein is homologous to the kinesin protein, including the ATP and microtubule binding sites. Thus, the nod gene encodes a putative microtubule motor which is required for the segregation of nonexchange chromosomes in Drosophila females. The nod gene is also transcribed in the embryonic, larval, and pupal stages of development, and possibly in all dividing cells. Thus the nod gene product may be involved in mitosis as well as in meiosis.
    Permanent Link(s)
    https://yulib002.mc.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9106896
    https://hdl.handle.net/20.500.12202/3336
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University