• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The atypical cadherin Fat1 regulates mitochondrial activity to control vascular smooth muscle cell growth

    Thumbnail

    Date
    2015
    Author
    Cao, Longyue Lily
    Metadata
    Show full item record
    Share
    Abstract
    In response to vascular injury, vascular smooth muscle cells (SMCs) undergo phenotypic switching, with enhanced cell cycle entry and migration, and loss of contractile protein expression. Previously, we found that the atypical cadherin Fatl is upregulated in SMCs after vascular injury. In cultured SMCs, Fatl is induced by growth factor stimulation, but limits SMC proliferation. Recently, we found that Fatl intracellular domain (ICD) species accumulate in SMC mitochondria and associates with proteins critical for metabolism, including Complex I subunits. The factors governing and significance of mitochondrial activity during SMC response to vascular injury are unclear. We hypothesized that Fatl regulates mitochondria) activity to control SMC growth. In cultured SMCs, loss of Fatl (Fat1KO) increased mitochondrial oxygen consumption rate, maximal respiratory capacity, and oxygen consumed for ATP production. Reactive oxygen species (ROS) was also increased in Fat1KO SMCs. This enhancement in mitochondrial respiration in the absence of Fatl was not associated with changes in overall mitochondrial morphology, mass, or dynamics. Mitochondrial specific targeting of Fatl ICD was sufficient to suppress respiration, and mitochondrial Complex I activity was elevated in Fat1KO cells, suggesting that Fatl can inhibit intrinsic mitochondrial respiratory activity. Fat1KO SMCs exhibited enhanced growth, which was opposed by adding Rotenone to inhibit Complex I function. In a mouse model of vascular injury, SMC Fatl deletion caused early and exuberant medial hyperplasia and neointimal expansion. We also found higher neointimal cell proliferation and ROS production in Fatl -deleted vessels after injury. In conclusion, we show that the atypical cadherin Fatl communicates with mitochondrial Complex I to repress energy and ROS production, acting as a molecular "brake" on mitochondrial activity to suppress SMC growth after vascular injury. This novel mechanism could serve as an effective target in the treatment of hyperproliferative vascular diseases.
    Permanent Link(s)
    https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10001829
    https://hdl.handle.net/20.500.12202/358
    Citation
    Source: Dissertation Abstracts International, Volume: 77-06(E), Section: B.;Advisors: Nicholas Sibinga.
    *This is constructed from limited available data and may be imprecise.
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1673]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University