• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural and electronic effects in cobalamins and model compounds: Their importance in the enzymatic processes

    Thumbnail
    Date
    1995
    Author
    Scheuring, Eva
    Metadata
    Show full item record
    Abstract
    Cobalamin dependent enzymes participate in a number of carbon skeleton rearrangement reactions as well as methylation reactions essential to all mammals. The key step in all of these reactions is the breakage of the Co-C bond. In the methylation reactions, utilizing methylcobalamin, the cofactor is cycling between Co(I) and Co(III)-methyl states, while the rearrangement reactions, utilizing 5'-deoxyadenosylcobalamin as cofactor, appear dependent on free radical transfer to substrate mediated through homolytic cobalt-carbon cleavage and formation of a Co(II) species. The 5,6-dimethylbenzimidazole group (DMB or base), connected to the Co atom on the opposite side of the Co-C bond, is generally believed to have a significant role modulating the Co-C bond cleavage. The base-on/base-off configuration has a proven effect on favoring homolytic versus heterolytic cleavage. However, recent crystallographic data on the 27 kDa fragment of methionine synthase, a methylcobalamin dependent enzyme, shows that the DMB ligand is replaced by a histidine group of the enzyme. Interestingly, there is a conserved region in other cobalamin dependent enzymes containing a histidine residue in the same position.;Using different spectroscopic techniques, primarily X-ray absorption spectroscopy (XAS) we have been intensively studying different forms of the free cobalamins and also the enzyme bound complexes, addressing the possibility of histidine replacement and changes in the cofactor structure upon binding to the enzyme. We have also made significant improvements in time-resolved pump-probe XAS (TRXAS); such methods are able to detect dynamic changes of metal centers as the reaction of interest proceeds and structurally describe short-lived intermediates in cases where other spectroscopies may only give indirect structural information. Our TRXAS studies on the primary photoproduct of base-off methylcobalamin demonstrate our ability to follow the structural dynamics of an enzymatically important species. In combination with our static XAS results on free and enzyme bound cobalamins these studies give new insight into the understanding of the enzyme's role accelerating the Co-C bond cleavage and promoting the homolytic versus heterolytic cleavage mechanism.
    Permanent Link(s)
    https://yulib002.mc.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9605380
    https://hdl.handle.net/20.500.12202/3641
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University