Statistics of Arnold’s Diffusion.

View/ Open
The file is restricted.
Please click here to access if the item description shows YU only.
Date
2018-08-24Author
Metadata
Show full item recordShare
Description
The file is restricted for YU community access only.
Abstract
Vladimir Arnold, a Russian mathematician, developed a series of dependent equations that can be
used to describe the stability of a system. To illustrate, Arnold’s ideas were used in developing a
mixing diagnostic tool based on time theory for incompressible fluid flow. This was used in predicting
the timing and location of oil washing ashore in Plaquemines Parish and Grand Isle, Louisiana, and
Pensacola, Florida, in May 2010 and the flow of oil toward Panama City Beach, Florida, in June 2010
(Mezic 2010). This system of equations has important physical applications.
The focus of this paper is an in depth analysis of the components that make up Arnold’s system
of equations, which will lend a deeper understanding to the experiments that follow. Arnold’s system
behaves like a pendulum in two dimensions, and a harmonic oscillator in the other two dimensions. The
computer experiments generate a series of initial conditions, and integrate them using Arnold’s di↵usion
equations. The Taylor Method is used to perform the integration. The final conditions are then analyzed
for their di↵usion along the I2 variable of the harmonic oscillator. The hypothesis is that with increasing
time of integration and as the coupling constant increases, the system will have a larger variance from the
mean. In order to determine the behavior of the I2 dimension of the system, histograms are generated,
and the mean and standard deviation are computed. Increasing the value of the coupling constant is
e↵ectively increasing the magnitude of the disturbance to the system, while when analyzing the e↵ect
of time, the system is being disturbed by a force of equal strength, over various lengths of time.
The hypothesis is in fact reflected in the histograms and calculated standard deviations, however,
to truly confirm this one would have to integrate many more times with varying parameters, a more
extensive investigation than was performed for the sake of this paper.
Permanent Link(s)
https://hdl.handle.net/20.500.12202/4515https://ezproxy.yu.edu/login?url=https://repository.yu.edu/handle/20.500.12202/4515
Citation
Weiser, Goldi. Statistics of Arnold’s Diffusion. Presented to the S. Daniel Abraham Honors Program in Partial Fulfillment of the Requirements for Completion of the Program Stern College for Women Yeshiva University August 24, 2018.
*This is constructed from limited available data and may be imprecise.
Collections
Item Preview
The file is restricted. Please click here to access if the item description shows YU only.
The following license files are associated with this item: