• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mechanistic studies of the Lon protease from Mycobacterium smegmatis

    Thumbnail

    Date
    2001
    Author
    Rudyak, Stanislav Gennadyevich
    Metadata
    Show full item record
    Share
    Abstract
    Protein degradation mediates a variety of biological processes ranging from regulation of the some metabolic pathways to housekeeping. In prokaryotes, ATP-dependent proteases mediate the turnover of abnormal and damaged proteins and degradation of some specific short-lived proteins. The Lon (La) protease is responsible for degradation of the majority of abnormal proteins synthesized in Escherichia coli. It is a multimeric enzyme that is activated by ATP and Mg2+ ions, and stimulated by unfolded proteins. In recent years homologs of Lon protease have been discovered in many prokaryotic organisms and in mitochondria. The Lon protease from Mycobacterium smegmatis (Ms-Lon) was selected as a model to study the ATP-dependent protein degradation by Lon. Results show that Ms-Lon can interact with three proteolytic substrates simultaneously and that formation of this quaternary complex requires the N-terminal region of Ms-Lon. Overall, our data support models of Ms-Lon that include two allosteric polypeptide binding sites distinct from the catalytic peptidase site. To characterize the structural dependence of substrate recognition by Ms-Lon, a series of mutants of the nuclease from Staphylococcus aureus (SNase) were tested as substrates of Ms-Lon. Degradation of these mutants was strongly correlated with their overall degree of compaction. In addition, the substrates containing low levels of secondary structure required both ATP hydrolysis and an intact Ms-Lon's N-terminal domain for degradation. We conclude that both sequence and structural components are important for substrate recognition by Ms-Lon. Finally, the peptidase activity of Ms-Lon was dependent upon both its concentration and that of Mg2+, suggesting that Mg 2+-dependent oligomerization modulates the peptidase activity of Ms-Lon. Indeed, analytical ultracentrifugation data demonstrated that self-association of Ms-Lon was enhanced in the presence of Mg2+. Subsequently, a stimulatory effect of alpha-casein on Ms-Lon's self-association was suggested by the chemical dissociation experiments. These results show that activation of Ms-Lon requires oligomerization and that Ms-Lon self-association is facilitated by its activator, Mg2+, and stimulator, unfolded protein. (Abstract shortened by UMI.).
    Permanent Link(s)
    https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3012327
    https://hdl.handle.net/20.500.12202/520
    Citation
    Source: Dissertation Abstracts International, Volume: 62-04, Section: B, page: 1859.;Advisors: Thomas E. Shrader.
    *This is constructed from limited available data and may be imprecise.
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1673]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University