Show simple item record

dc.contributor.advisorDalezman, Michael
dc.contributor.advisorTeicher, Mina
dc.contributor.authorStern, Jacob
dc.contributor.authorYeshiva University, degree granting institution.
dc.date.accessioned2020-06-08T18:57:22Z
dc.date.available2020-06-08T18:57:22Z
dc.date.issued2020-05
dc.identifier.citationStern, Michael. (May 2020). Commutative Subgroup Pairs of B n with Applications for Cryptography. Thesis Submitted in Partial Fulfillment of the Requirements of the Jay and Jeanie Schottenstein Honors Program. Yeshiva College. Yeshiva University, May 2020.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12202/5607
dc.descriptionSenior honors thesis. Opt-out. For access, please contact yair@yu.eduen_US
dc.description.abstractCryptography is the science of writing and deciphering code. In the last few years Cyber-Cryptography, or the science of writing and deciphering digital code has become central in our society. Many methods of Cyber-Cryptography are known and used today by some of our most important institutions. One of the most popular methods of Cyber-Cryptography is known as Public Key Cryptography. Many variants of Public Key Cryptography are used today, such as the popular Diffie–Hellman Protocol and the RSA Algorithm. To combat any potential weaknesses alternative Public Key Cryptography methods have been proposed. One of these Methods, known as The Korean Protocol relies heavily on a mathematical structure known as a Braid Group. Underlying the Korean Protocol is the division of a braid group into a pair of commutative subgroups. There is a trivial division of B n into two subgroups, which is what has been traditionally used. A list of all such commutative subgroup pairs would be an invaluable addition to cryptography. We set out to categorize all commutative pairs of subgroups. In the end we were able to create an algorithm that can generate any arbitrary commutative pair of subgroups.en_US
dc.description.sponsorshipJay and Jeanie Schottenstein Honors Programen_US
dc.language.isoen_USen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectSenior honors thesisen_US
dc.subjectCryptographyen_US
dc.subjectBraid theory.en_US
dc.titleCommutative Subgroup Pairs of B n with Applications for Cryptography.en_US
dc.typeThesisen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States