Timescales in the quench dynamics of many-body quantum systems: Participation ratio versus out-of-time ordered correlator.
Description
Research article, peer-reviewed. Open Access.
Abstract
We study quench dynamics in the many-body Hilbert space using two isolated systems with a finite number
of interacting particles: a paradigmatic model of randomly interacting bosons and a dynamical (clean) model
of interacting spins-1/2. For both systems in the region of strong quantum chaos, the number of components
of the evolving wave function, defined through the number of principal components Npc (or participation ratio),
was recently found to increase exponentially fast in time [Phys. Rev. E 99, 010101(R) (2019)]. Here, we ask
whether the out-of-time ordered correlator (OTOC), which is nowadays widely used to quantify instability in
quantum systems, can manifest analogous time dependence. We show that Npc can be formally expressed as the
inverse of the sum of all OTOCs for projection operators. While none of the individual projection OTOCs show
an exponential behavior, their sum decreases exponentially fast in time. The comparison between the behavior
of the OTOC with that of the Npc helps us better understand wave packet dynamics in the many-body Hilbert
space, in close connection with the problems of thermalization and information scrambling.
Permanent Link(s)
https://doi.org/10.1103/PhysRevE.99.052143https://hdl.handle.net/20.500.12202/6448
Citation
Santos, Lea F., Fausto Borgonovi, Felix M Izrailev. (2019). Timescales in the quench dynamics of many-body quantum systems: Participation ratio versus out-of-time ordered correlator. Physical Review E 99(5): 052143
*This is constructed from limited available data and may be imprecise.
Collections
Item Preview
The following license files are associated with this item: