• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fate specification in mouse inner ear development

    Thumbnail

    Date
    2003
    Author
    Raft, Steven
    Metadata
    Show full item record
    Share
    Abstract
    The embryonic otic epithelium may be viewed as a model system for the study of tissue patterning and cell fate specification in vertebrates. Growth, differentiation, and morphological elaboration transform a simple epithelial cyst into the inner ear labyrinth, along which lie the various mechanosensory organs of balance and hearing. In addition, the otic epithelium is a source of neural progenitors for the VIIIth cranial (vestibulocochlear) sensory ganglion, which innervates the ear. Developmental mechanisms governing the segregation of neural and sensory organ progenitor lineages during inner ear development are currently unknown. A prevailing hypothesis holds that the otocyst is compartmentalized along its major axes by selector gene activity, and that nascent sensory organ territories are induced at compartment boundaries. Otocyst expression of early neural markers is also regionalized, therefore neural- and sensory-competent states may be spatially segregated from the outset of progenitor cell determination. Other lines of evidence suggest the existence of a common neural- and sensory-competent region, in which case these states may be expressed in temporal succession by a multi-potent progenitor cell pool. Either scenario allows for the possibility that sensory organ induction must be accompanied by active neurogenic suppression. I show that the T-box gene Tbx1/TBX1 is necessary and sufficient to suppress otocyst neurogenesis. Furthermore, Tbx1 is required for sensory organ-associated gene expression and proper morphogenesis of inner ear sensory organs. Results obtained are consistent with an involvement of both pro-neural/pro-sensory tissue compartmentalization and common progenitor pool fate switching during otocyst stages of ear development. These different processes are distributed by otocyst position, but both processes are mediated by Tbx1 activity. I hypothesize that all prospective sensory organ territories of the otocyst are either latently or transiently neurogenic.
    Permanent Link(s)
    https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3093855
    https://hdl.handle.net/20.500.12202/646
    Citation
    Source: Dissertation Abstracts International, Volume: 64-06, Section: B, page: 2555.;Advisors: Thomas R. Van De Water.
    *This is constructed from limited available data and may be imprecise.
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University