• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A characterization of caveolins/caveolae in cardiac and smooth muscle tissues

    Thumbnail

    Date
    2004
    Author
    Woodman, Scott E.
    Metadata
    Show full item record
    Share
    Abstract
    To better understand the role of caveola/caveolins in electrically responsive cells we examined cardiac muscle and urogenital smooth muscle tissues in mice genetically engineered to be caveolin deficient.;Only Cav-3 is expressed in adult mouse cardiac myocytes. Caveolin-3 knock-out (Cav-3 KO) mouse hearts fail to express the Cav-3 protein and Cav-3 KO cardiac myocytes do not form caveolae. These hearts still express Cav-1 and Cav-2, corresponding to the caveolae formation in cardiac endothelium. Cav-3 KO hearts are hypertrophy and display a reduction in fractional shortening by gated cardiac MRI and transthoracic echocardiography. Histological analysis also show Cav-3 KO hearts to be hypertrophic with an increase in cellular infiltrates. Although the expression and membrane association of dystophin-glycoprotein complex (DGC) proteins remain unchanged, a DGC marker, alpha-sarcoglycan, is excluded from lipid raft/caveolar domains. Mitogen-Activated Protein Kinase activity is increased in Cav-3 KO hearts. These results suggest that Cav-3 generated caveolae in cardiac myocytes play a role in facilitating membrane signaling.;All caveolin family members are expressed in adult mouse urinary bladder. Cav-1 KO mouse urinary bladders fail to express Cav-1, show a near complete loss of Cav-2, with no significant change in Cav-3 expression. Cav-3 KO mouse urinary bladders fail to express Cav-3, but express Cav-1 and Cav-2 in normal amounts. Caveolae formation was only reduced in Cav-1 KO mouse urinary bladders, showing Cav-1 to be the primary caveolae-forming caveolin family member. Cystometric analysis of urinary bladder function within Cav-1 KO mouse urinary bladders show higher basal, threshold, and spontaneous pressure measurements as compared to wild-type controls. Histological analysis reveals urinary bladder smooth muscle cell hypertrophy in the Cav-1 KO mouse. Cav-1 KO bladder strips have a diminished contractile response to the muscarinic agonist carbachol and KCl membrane depolarization. These results suggest that Cav-1 generated caveolae may play an important role in the facilitation of urinary bladder smooth muscle cell contraction.
    Permanent Link(s)
    https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3142192
    https://hdl.handle.net/20.500.12202/726
    Citation
    Source: Dissertation Abstracts International, Volume: 65-09, Section: B, page: 4430.;Advisors: Michael P. Lisanti.
    *This is constructed from limited available data and may be imprecise.
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University