• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecular regulation of the HERG potassium channel

    Thumbnail
    Date
    2004
    Author
    Kagan, Anna
    Metadata
    Show full item record
    Abstract
    The dynamic regulation of membrane excitability determines the human heart rhythm and governs cardiac adaptation to changes in physiologic demands. Human Ether-a-go-go Related Gene (HERG) encodes the pore-forming K+ selective channel subunit that carries the rapidly activating delayed rectifier current (Ikr). Ikr is unique in its ability to respond to and modify the rate of membrane repolarization at the end of each action potential, making it essential to the maintenance of the cardiac rhythm. HERG K+ channel has been linked to both hereditary and acquired forms of the Long QT syndrome (LQT), a potentially fatal cardiac disorder with a characteristic polymorphic ventricular tachyarrhythmia. Given the critical role of this channel in controlling the cardiac rhythm, we studied mechanisms of molecular and cellular regulation of HERG and proposed a role for these mechanisms in both normal activity and the LQT Syndrome.;To examine the role of cellular proteins in the regulation of HERG K + channel function, we sought to identify additional proteins that interact with and modify channel activity. In a yeast-two-hybrid screen of a human heart library, we identified an interaction between HERG and 14-3-3 proteins providing a novel mechanism linking beta-adrenergic signaling and HERG K+ channel function. Association of HERG and 14-3-3 required protein kinase A (PKA) dependent phosphorylation of the channel on both the N- and C-termini. 14-3-3 binding stabilized the lifetime of the PKA-phosphorylated state of the channel by shielding HERG from phosphatases. 14-3-3 overexpression enhanced HERG current by accelerating activation and shifting the voltage dependence of channel activation to more hyperpolarized potentials. The functional effects of 14-3-3 on HERG current required dimerization of 14-3-3 and potential cross-bridging of the cytoplasmic termini of the channel. We confirmed an association of HERG and 14-3-3 in porcine myocardium, supporting a role for 14-3-3 in regulating endogenous HERG/Ikr. Overall, binding of 14-3-3 to HERG prolonged the effects of cAMP stimulation upon channel activity. These results describe a novel molecular mechanism by which adrenergic signaling alters HERG channel activity and provide initial evidence that a macromolecular complex couples intracellular signals with membrane excitability by dynamically regulating HERG.
    Permanent Link(s)
    https://yulib002.mc.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3142194
    https://hdl.handle.net/20.500.12202/728
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University