• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dosage -dependent role of Tbx1 in 22q11 deletion syndrome mouse models

    Thumbnail
    Date
    2006
    Author
    Liao, Jun
    Metadata
    Show full item record
    Abstract
    The 22q11 deletion syndrome (22q11DS) is a congenital anomaly disorder affecting structures derived from the pharyngeal apparatus including the craniofacial region, thymus gland and heart. Most affected individuals have the same sized 3 Mb deletion in chromosome 22q11.2 region, yet the disorder varies in severity. Tbx1, a member of T-box containing transcription factor family, was recently identified to be the gene responsible for the etiology of the 22q11DS syndrome by mouse genetic studies. Tbx1 is expressed in the endoderm and the core mesoderm of the pharyngeal apparatus as well as the secondary heart field (SHF) during embryonic development. Tbx1 +/- mice have mild cardiovascular defects, while Tbx1 -/- mice show severe anomalies in most pharyngeal apparatus-derived organs and die at birth. Interestingly, bacterial artificial chromosome (BAC) transgenic mice overexpressing human TBX1 and three other transgenes have strikingly similar malformations as in the syndrome. To determine whether overexpression of TBX1 is responsible for the phenotype in BAC transgenic mice, I performed genetic complementation experiments by crossing the BAC transgenic mice into the Tbx1 null mutant background. I found that partial normalization of the Tbx1 dosage rescued most of the malformations in BAC transgenic mice, suggesting that altered TBX1 dosage and not overexpression of the other transgenes is responsible for the mutant phenotype. In order to delineate genes that act downstream of Tbx1, I performed a gene profiling study using Affymetrix microarrays on microdissected distal pharyngeal apparatus from wild type and Tbx1 -/- embryos at E8.75, E9.75 and E10.75. Based on their expression pattern and developmental functions, four groups of genes were identified and validated by quantitative RT-PCR (qRT-PCR) and in situ hybridization (ISH), including Nkx2-6, Pax9, Gcm2 in the pharyngeal endoderm, Msc and Myf5 in the core mesoderm, Aldh1a2, Tbx5, Gata4, Hod and some cardiac muscle differentiation marker genes in the SHF, as well as Lhx8 and Dlx genes in the neural crest cells (NCCs). My study contributes significantly to our understanding of dosage-dependent role of Tbx1 in the development of the pharyngeal apparatus and the pathogenesis of 22q11DS.
    Permanent Link(s)
    https://yulib002.mc.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3222525
    https://hdl.handle.net/20.500.12202/856
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University