• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dose -dependent transcriptional regulation by the calcineurin/NFAT signaling in developing myocardium transition

    Thumbnail
    Date
    2007
    Author
    Yang, XiaoYong
    Metadata
    Show full item record
    Abstract
    Multiple transcription factors and signaling pathways are involved in the regulation and function of the myocardium in heart development. Disruption of certain transcription factors or critical components of signaling pathways frequently causes structural malformation in heart and persistence of "thin spongy myocardium". Thin spongy myocardium is critical at early embryonic stage [before embryonic day (E) 13.5 in mice] to allow diffusion of oxygen and nutrient to the developing cardiomyocytes. However, establishment of compact myocardium at later stage (-E16.5) during development is necessary to prepare for the increase in demand for blood circulation. Molecular targets of the spongy-compact myocardium transition at E13.5-E16.5 in heart development remain elusive. Previously, we have demonstrated calcineurin/NFAT activation at E14.5 in developing myocardium. Here, I report transcription targets, independently and dependently, regulated by the calcineurin/NFAT signaling during E13.5-E16.5 myocardium transition. I have uncovered that expression of one-third of the induced genes during myocardium transition is calcineurin/NFAT dependent. Among these calcineurin/NFAT dependent transcription targets, there is a dose dependent regulation. Formation of distinct NFAT:DNA complex may account for the dose-dependent regulation. Thus, in addition to temporal and spatial regulation, dose-dependent requirement provides another mechanism to modulate transcription response mediated by the calcineurin/NFAT signaling.;Among the identified genes that are dose-dependent regulated by calcineurin/NFAT signaling during myocardium transition, I focus on regenerating islet-derived 3 gamma (Reg3gamma). The expression of Reg3gamma in heart is developmentally regulated and coincident with changes of NFAT activity in heart, supporting the regulation of Reg3gamma by NFAT during heart development. Gel mobility shift assay confirmed the formation of NFAT:Reg3gamma DNA complex. Therefore, NFAT directly binds to and regulates the Reg3gamma gene promoter. In addition, I have shown that Reg3gamma is a secretory protein and its expression in intestine and heart increased upon inflammation and myocardial ischemia/reperfusion. Thus, Reg3gamma is directly regulated by NFAT and participates in heart development, inflammation and stress response.
    Permanent Link(s)
    https://yulib002.mc.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3244418
    https://hdl.handle.net/20.500.12202/882
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University