• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sensorimotor integration in the Mauthner cell system and the role of inhibition

    Thumbnail
    Date
    2008
    Author
    Weiss, Shennan Aibel
    Metadata
    Show full item record
    Abstract
    A goal in neuroscience is to understand how individual neurons process sensory information, make a decision and generate a motor command. The Mauthner (M-) cell is a giant reticulospinal neuron present as a pair in many fish. When a stimulus excites the M-cell above threshold it fires a single action potential that correlates with a fast startle-escape response. The escape is often appropriately timed and directional. We used electrophysiological and behavioral techniques to investigate the functional organization of the M-cell's neuronal network, and the biophysical mechanisms that endow the system with decision-making capacities. We show that the M-cell initiates the escape behavior in response to diverse multimodal stimuli, and that other reticulospinal neurons, in parallel and in series with the M-cell, specify the trajectory of the C-start escape. Stimulus-evoked inhibition of the M-cell regulates the behavioral threshold and is partially mediated by a rarely described, but potentially widespread, form of neurotransmission known as a field effect. Sound phase encoding, mediated by gap junctions, is evident in the excitatory and inhibitory branches of the M-cell circuit and at the behavioral level, suggesting that the M-cell system implements a time coding algorithm to discriminate the location of underwater sound sources. These results advance the understanding of sensorimotor integration in the M-cell system, and the biophysical basis of decision-making in single neurons.
    Permanent Link(s)
    https://yulib002.mc.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3335426
    https://hdl.handle.net/20.500.12202/991
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University