• Login as Editor
    View Item 
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    •   Yeshiva Academic Institutional Repository
    • Albert Einstein College of Medicine (AECOM)
    • Albert Einstein College of Medicine: Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A neuroanatomical analysis of striosome-matrix compartmentalization and motor deficits in YAC mouse models of Huntington's disease

    Thumbnail

    Date
    2009
    Author
    Lawhorn, Collene
    Metadata
    Show full item record
    Share
    Abstract
    The striatum contains mu opioid receptor-rich (MOR) cells called striosomes embedded in an extrastriosomal matrix. In Huntington's disease (HD), the striosomes and matrix may be differentially targeted and contribute to motor symptoms. To determine if differential pathology occurs and contributes to symptoms in an HD mouse model, we analyzed striosome-matrix changes and complex motor behaviors over time in the YAC72 and YAC128 transgenic mouse models, and in healthy wild-type (WT) mice using the MOR specific toxin dermorphin-saporin (DS). YACs and WTs were tested on motor tasks and striatal compartments were analyzed volumetrically and stereologically. Compared to WTs, mild motor deficits were uncovered in YAC72 mice, while greater motor deficits were confirmed in YAC128s. Both YAC models showed similar striosome volume loss, while YAC128 mice also showed a small matrix volume decrease. YAC128 mice experienced cell loss in both compartments, but a greater percentage of cell loss in the striosomes. In WT mice with DS lesions to the dorsolateral striatum, motor deficits were dependent on lesion extent. Cell loss was restricted to the striosomes in DS mice and correlated with the extent of striosome volume loss. Though one cohort of DS lesioned mice showed a greater percentage of striosome volume loss than both YAC models, their motor deficits were not as severe. From these data we conclude that striosomes are differentially targeted in a mouse model for HD, and that they play a distinctive role in some motor behaviors. However, dorsolateral striosome integrity is not critical to modulate all motor behavior in normal mice. In conclusion, this combination of lesion and HD mutant studies shows that a population of MOR expressing cells in the striatum belongs to a distributed network of neurons, which in conjunction with the matrix neurons contributes to motor behavior.
    Permanent Link(s)
    https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3340830
    https://hdl.handle.net/20.500.12202/998
    Citation
    Source: Dissertation Abstracts International, Volume: 69-12, Section: B, page: 7317.;Advisors: Lucy L. Brown.
    *This is constructed from limited available data and may be imprecise.
    Collections
    • Albert Einstein College of Medicine: Doctoral Dissertations [1674]

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University
     

     

    Browse

    AllCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login as Editor

    Statistics

    View Usage Statistics

    Yeshiva University Libraries copyright © 2021  DuraSpace
    YAIR Self-Deposit | YAIR User's Guide | Take Down Policy | Contact Us
    Yeshiva University