Intuitionistic logic model theory and forcing
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
YU Faculty Profile
Abstract
The independence proofs of Cohen for the axiom of choice, the continuum hypothesis, and the axiom of constructability are re-formulated using s. Kripke's intuitionistic logic model theory·. We define transfinite sequences of intuitionistic.models with a 'class' model limit in a manner exactly analogous to the definition of Godel in the classical case of a transfinite sequence of (domains of) classical models, M∞ , with a 'class' model limit, L. Classical independence results are established by working with the intuitionistic models themselves; no classical models are constructed, no countable classical models are required (though the definition of intuitionistic model is essentially the same as that of forcing.) ¶ An intuitionistic (or forcing) generalization of the R∞: sequence (sets with rank) is defined and some connections between it and Scott and Solovay's boolean valued models for set theory are established. ¶ For completeness sake, the first six chapters provide a complete treatment of s. Krlpke's intuitionistic logic model theory. Completeness proofs are given for tableau and axiomatic systems, compactness and Skolem-Lowenheim theorems ·are established, and relations with classical logic are shown. The connection between Kripke rmodel theory and algebraic model theory is shown in the propositional case.