THE SPECTRA OF THE SCHROEDINGER OPERATOR

dc.contributor.authorBRENNER, TERENCE
dc.date.accessioned2018-07-12T18:18:33Z
dc.date.available2018-07-12T18:18:33Z
dc.date.issued1984
dc.description.abstractWe look at the Schrodinger operator H=-(DELTA)+q(x) where (DELTA) is the Laplacian and q(x)(epsilon)R('n). We give sufficient conditions for the spectrum of H to contain the interval of the form {lcub}a,(INFIN)) and sufficient conditions for the essential spectrum of H to contain the interval of the form {lcub}b,(INFIN)). Our estimates for the lower bounds of a and b are positive numbers. We allow q(x) to be negative in some region. Our results are in R('2) and in R('n).
dc.identifier.citationSource: Dissertation Abstracts International, Volume: 45-12, Section: B, page: 3837.
dc.identifier.urihttps://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:8502693
dc.identifier.urihttps://hdl.handle.net/20.500.12202/2976
dc.publisherProQuest Dissertations & Theses
dc.subjectMathematics.
dc.titleTHE SPECTRA OF THE SCHROEDINGER OPERATOR
dc.typeDissertation

Files