Intracellular sorting of peptide hormone precursors and the mechanism of secretory vesicle formation
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
YU Faculty Profile
Abstract
This thesis is divided into two related parts: (i) Prohormone processing. Most peptide hormones are synthesized as precursors possessing a propeptide. To test that the propeptide may function in intracellular sorting of prohormones to the trans-Golgi network (TGN), a chimeric construct was made which comprises the signal peptide and proregion of anglerfish prosomatostatin-I (SRIF-I) which is processed in rat pituitary GH{dollar}\sb3{dollar} cells, fused to proSRIF-II which degraded in these cells. When the chimera was expressed in GH{dollar}\sb3{dollar} cells, it was found that the SRIF-I propeptide rescued proSRIF-II from degradation and diverted it to secretory vesicles. The chimera was processed to SRIF-28, the physiological product of proSRIF-II. The SRIF-I propeptide functioned only in cis, but not in trans. These data suggest that the SRIF-I propeptide may possess a sorting signal for sequestration into the secretory pathway rather than functioning as an intramolecular chaperone to promote protein folding. (ii) Secretory vesicle formation from the TGN. ADP-ribosylation factor (ARF), a small GTP-binding protein, regulates the budding of vesicles that mediate endoplasmic reticulum (ER)-to-Golgi and intra-Golgi transport. It also plays an important role in maintaining the morphology of the Golgi apparatus. Using a permeabilized cell system derived from GH{dollar}\sb3{dollar} cells, the recombinant wild type human ARF-1 enhanced secretory vesicle budding about two-fold. A mutant lacking the first 17 N-terminal residues, as well as a mutant in the GDP-binding form did not stimulate vesicle formation. In contrast, a mutant defective in GTP hydrolysis promoted vesicle budding. Strikingly, a synthetic peptide corresponding to the N-terminus of human ARF-1 (amino acids 2-17) stimulated secretory vesicle budding, this is in marked contrast to its inhibitory effect on E.R. to Golgi transport. These data demonstrate that in endocrine cells, ARF-1 and particularly its N-terminus plays an essential role in the formation of secretory vesicles. Preliminary evidence suggests that phospholipase D, a downstream effector of ARF, also plays a essential role in promoting release of secretory vesicles from the TGN.