Decay of a thermofield-double state in chaotic quantum systems.
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
YU Faculty Profile
Abstract
Scrambling in interacting quantum systems out of equilibrium is particularly effective in the chaotic regime. Under time evolution, initially localized information is said to be scrambled as it spreads throughout the entire system. This spreading can be analyzed with the spectral form factor, which is defined in terms of the analytic continuation of the partition function. The latter is equivalent to the survival probability of a thermofield double state under unitary dynamics. Using random matrices from the Gaussian unitary ensemble (GUE) as Hamiltonians for the time evolution, we obtain exact analytical expressions at finite Nfor the survival probability. Numerical simulations of the survival probability with matrices taken from the Gaussian orthogonal ensemble (GOE) are also provided. The GOE is more suitable for our comparison with numerical results obtained with a disordered spin chain with local interactions. Common features between the random matrix and the realistic disordered model in the chaotic regime are identified. The differences that emerge as the spin model approaches a many-body localized phase are also discussed.