Universal fractional map and cascade of bifurcations type attractors
dc.contributor.author | Edelman, Mark | |
dc.contributor.orcid | 0000-0002-5190-3651 | |
dc.date.accessioned | 2018-06-21T20:19:31Z | |
dc.date.available | 2018-06-21T20:19:31Z | |
dc.date.issued | 2013-09 | |
dc.description.abstract | We modified the way in which the Universal Map is obtained in the regular dynamics to derive the Universal α-Family of Maps depending on a single parameter α>0, which is the order of the fractional derivative in the nonlinear fractional differential equation describing a system experiencing periodic kicks. We consider two particular α-families corresponding to the Standard and Logistic Maps. For fractional α<2 in the area of parameter values of the transition through the period doubling cascade of bifurcations from regular to chaotic motion in regular dynamics corresponding fractional systems demonstrate a new type of attractors—cascade of bifurcations type trajectories. | en_US |
dc.identifier.citation | Edelman, Mark. (2013) Universal fractional map and cascade of bifurcations type attractors. Chaos 23. | en_US |
dc.identifier.issn | 1089-7682 | |
dc.identifier.uri | https://doi.org/10.1063/1.4819165 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12202/50 | |
dc.language.iso | en_US | en_US |
dc.publisher | Chaos: An Interdisciplinary Journal of Nonlinear Science | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | chaotic dynamics | en_US |
dc.subject | attractors | en_US |
dc.subject | bifurcations | en_US |
dc.subject | integral equations | en_US |
dc.subject | Integrodifferential equations | en_US |
dc.subject | nanomaterial properties | en_US |
dc.subject | anatomy | en_US |
dc.subject | human memory | en_US |
dc.subject | chaos | en_US |
dc.subject | nonlinear dynamics | en_US |
dc.title | Universal fractional map and cascade of bifurcations type attractors | en_US |
dc.type | Article | en_US |
local.yu.facultypage | https://www.yu.edu/faculty/pages/edelman-mark |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Edelman Universal fractional 2013 Chaos.pdf
- Size:
- 4.7 MB
- Format:
- Adobe Portable Document Format
- Description: