Invariants of finite reflection groups
dc.contributor.advisor | Flatto, Leopold | |
dc.contributor.advisor | Zlot, William | |
dc.contributor.advisor | Newman, Donald | |
dc.contributor.author | Wiener, Margaret Mary | |
dc.date.accessioned | 2018-07-12T17:47:16Z | |
dc.date.available | 2018-07-12T17:47:16Z | |
dc.date.issued | 1968 | |
dc.description | Doctoral dissertation, PhD / YU only | |
dc.description.abstract | The invariants of a finite reflection group acting on an n dimensional vector space over a field of characteristic zero have an integrity basis or n invariants. If the underlying field is real or complex this property is a characterization of the finite reflection groups. In this thesis the above statement is proved and we give a method for computing the degrees of the members of the basis. __The construction of a basic set of invariants is shown to be related to the solution of a certain mean value problem. Considerations of this mean value problem lead to a conjecture yielding an explicit construction of a basic set of invariants. The conjecture is verified for most of the irreducible finite reflection groups. | |
dc.identifier.citation | Wiener, M. M. (1968). Invariants of finite reflection groups (Publication No. 302362380) [Doctoral dissertation, Yeshiva University]. Source: Dissertation Abstracts International, Volume: 29-02, Section: B, page: 6940. | |
dc.identifier.isbn | 9798641390888 | |
dc.identifier.uri | https://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:6810991 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12202/1849 | |
dc.publisher | ProQuest Dissertations & Theses | |
dc.subject | Mathematics. | |
dc.title | Invariants of finite reflection groups | |
dc.type | Dissertation |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Wiener - Invariants of Finite Reflection Groups YU only.pdf
- Size:
- 10.18 MB
- Format:
- Adobe Portable Document Format
- Description: