COMP 4930H Topics: Natural Language Processing

dc.contributor.authorWaxman, Joshua
dc.date.accessioned2021-11-02T17:22:57Z
dc.date.available2021-11-02T17:22:57Z
dc.date.issued2021-01
dc.descriptionSCW syllabus / YU onlyen_US
dc.description.abstractOverview: We will explore algorithms for understanding and producing human language. We will consider NLP applications of tokenization, word and sentence segmentation, part-of-speech tagging, morphological analysis, syntax parsing, and more. We will explore the overlap between NLP, information retrieval, machine learning and deep learning. Practically, we will implement many of these algorithms or utilize popular NLP frameworks to apply these algorithms. Prerequisites: Data Structures and Calculusen_US
dc.identifier.citationWaxman, Joshua. (2021, Spring), Syllabus, COMP 4930H Topics: Natural Language Processing, Stern College for Women, Yeshiva University.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12202/7649
dc.language.isoen_USen_US
dc.relation.ispartofseriesSCW Syllabi;COMP 4930H
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjecthuman language productionen_US
dc.subjecttokenizationen_US
dc.subjectmorphological analysisen_US
dc.subjectsyntax parsingen_US
dc.subjectalgorithmsen_US
dc.subjectNLP frameworksen_US
dc.titleCOMP 4930H Topics: Natural Language Processingen_US
dc.typeLearning Objecten_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COMP4930H-NLP.Waxman.Spring-2021 O.pdf
Size:
208.66 KB
Format:
Adobe Portable Document Format
Description: