Show simple item record

dc.contributor.authorSantos, Lea F.
dc.contributor.authorSchiulaz, Mauro
dc.contributor.authorTorres-Herrera, E. Jonathan
dc.contributor.authorPérez-Bernal, Francisco
dc.date.accessioned2020-11-18T21:13:38Z
dc.date.available2020-11-18T21:13:38Z
dc.date.issued2020-05-26
dc.identifier.citationSantos, Lea F., Mauro Schiulaz, E Jonathan Torres-Herrera, Francisco Pérez-Bernal. (2020). Self-averaging in many-body quantum systems out of equilibrium: Chaotic systems. Physical Review B. 101(17): 174312.en_US
dc.identifier.issn2469-9969
dc.identifier.urihttps://doi.org/10.1103/PhysRevB.101.174312en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12202/6438
dc.descriptionResearch article, peer-reviewed. Open-Access.en_US
dc.description.abstractDespite its importance to experiments, numerical simulations, and the development of theoretical models,self-averaging in many-body quantum systems out of equilibrium remains under investigated. Usually, in the chaotic regime, self-averaging is taken for granted. The numerical and analytical results presented here force us to rethink these expectations. They demonstrate that self-averaging properties depend on the quantity and also on the time scale considered. We show analytically that the survival probability in chaotic systems is not self-averaging at any time scale, even when evolved under full random matrices. We also analyze the participation ratio, Rényi entropies, the spin auto correlation function from experiments with cold atoms, and the connected spin-spin correlation function from experiments with ion traps. We find that self-averaging holds at short times for the quantities that are local in space, while at long times, self-averaging applies for quantities that are local in time. Various behaviors are revealed at intermediate time scales.en_US
dc.description.sponsorshipACKNOWLEDGMENTS M.S. and L.F.S. were supported by the NSF Grant No. DMR-1603418. E.J.T.-H. acknowledges funding from VIEP-BUAP (Grant Nos. MEBJ-EXC19-G, LUAGEXC19-G), Mexico. He is also grateful to LNS-BUAP for allowing use of their supercomputing facility. F.P.-B. thanks the Consejería de Conocimiento, Investigación y Universidad, Juntade Andalucía and European Regional Development Fund(ERDF), ref. SOMM17/6105/UGR. Additional computer re-sources supporting this work were provided by the Universidad de Huelva CEAFMC High Performance Computerlocated in the Campus Universitario el Carmen and funded by FEDER/MINECO project UNHU-15CE-2848. L.F.S. is supported by the NSF Grant No. DMR-1936006. Part of this work was performed at the Aspen Center for Physics, which is supported by the NSF Grant No. PHY-1607611.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofseriesPhysical Review B;101(17)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectquantum quenchen_US
dc.subjectNonequilibrium statistical mechanicsen_US
dc.subjectquantum statistical mechanicsen_US
dc.subjectCondensed Matteren_US
dc.subjectStatistical Physicsen_US
dc.subjectCondensed Matter & Materials Physicsen_US
dc.titleSelf-averaging in many-body quantum systems out of equilibrium: Chaotic systems.en_US
dc.typeArticleen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States