Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12202/812
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJia, Lingyun
dc.date.accessioned2018-07-12T17:33:43Z
dc.date.available2018-07-12T17:33:43Z
dc.date.issued2006
dc.identifier.citationSource: Dissertation Abstracts International, Volume: 66-12, Section: B, page: 6396.;Advisors: Scott W. Emmons.
dc.identifier.urihttps://ezproxy.yu.edu/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3197058
dc.identifier.urihttps://hdl.handle.net/20.500.12202/812
dc.description.abstractUnderstanding the assembly of sex-specific circuits will help to elucidate the neural networks underlying complicated mating behaviors. In this study, I tried to understand the genetic mechanisms of axon guidance of ray sensory neurons in the C. elegans male, which are required for copulation. I investigated how the known guidance genes and potentially new genes affect the establishment of these circuits. One major conclusion through this study is that ray axon pathfinding relies on a combination of general guidance cues and ray-specific genes. Ray commissures may either pioneer their routes or follow the preexisting tail commissures during postembryonic development. The global guidance cue UNC-6/netrin-UNC-40/DCC provides the primary dorsoventral guidance cue to ray axons for dorsoventral migration. Anterior axon growth cones also respond to an unknown antero-posterior cue(s). Among 6 potentially new rax genes, rax-1 and rax-4 are highly specific to ray neurons and appear to be required for dorsoventral migration; rax-2 and rax-3 affect the antero-posterior signaling for both ray neuron cell bodies and their axons or for the cell fate determination. rax-5 and rax-6 affect both axon guidance and ray morphology. Further characterizing their molecular identities should provide a basis for understanding the mechanisms underlying ray commissure development. In addition, the maintenance of processes of ray neurons requires the SAX-1/NDR and SAX-2/FRY signal pathway as other sensory neurons.;Another gene egl-35 was studied in detail. egl-35(bx129) adult males lack both mate-searching and copulatory behaviors, which are similar to larval males, suggesting that egl-35(bx129) males have an immature nervous system. egl-35 mutants display several malformations of the nervous system: abnormal axon guidance of ray neurons, mis-regulated expression of serotonin in CP motorneurons and failure to migration of two putative neuroendocrine XXX cells. egl-35 can interact with the heterochronic genes let-7 and lin-14 to regulate the timing of larval development. These observations raise the possibility that egl-35 switches the timing of maturation of neurons underlying adult sexual behaviors. I found that egl-35 encodes a SWI/SNF like ATPase, a component of Tip60/NuA4-like HAT complex, suggesting EGL-35 could regulate the expression of genes required for neuron maturation.
dc.publisherProQuest Dissertations & Theses
dc.subjectGenetics.
dc.subjectMolecular biology.
dc.subjectNeurosciences.
dc.titleGenetic mechanisms for axonal development of ray sensory neurons and behavior in the Caenorhabditis elegans male
dc.typeDissertation
Appears in Collections:Albert Einstein College of Medicine: Doctoral Dissertations

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.